| Peer-Reviewed

Electric Field Effects on Neutral Gold Clusters Au2-10: A First-Principles Theoretical Survey of the First- and Second-Order Hyperpolarizabilities

Received: 28 June 2021     Accepted: 19 July 2021     Published: 29 July 2021
Views:       Downloads:
Abstract

Herein we report the density functional theory (DFT) calculations of nonlinear optical (NLO) properties of neutral gold clusters Aun (n=2-10) applying long-range corrected LC-M06L functional and Los-Alamos National Laboratory double-ζ polarized basis set. The effects of the incident frequency on the first and second-order hyperpolarizability together with the influence of the external electric field on the frontier orbitals of neutral gold clusters are investigated. It is found that the application of external electric field can increase or decrease the gap energy of neutral gold clusters depending on the direction and magnitude of the applied field. More importantly, by correctly controlling the direction and magnitude of the external electric field, reactive gold clusters having low gap energies can be achieved. Furthermore, the external electric field has more important effect on the virtual orbitals of gold hexamer and decreases the energy of these orbitals along the directions parallel to the molecular plane, resulting in low-energy excitations. The low-energy excitations are expected to play important role in the high second-order hyperpolarizability and better response to the applied field. The third-order nonlinear (NLO) properties of gold hexamer are also strongly affected by the frequency of the incident light and thus can be tuned using the incident frequency for applications. The present work may propose new strategies for enhancing the nonlinear optical response of neutral gold clusters.

Published in Science Journal of Chemistry (Volume 9, Issue 4)
DOI 10.11648/j.sjc.20210904.11
Page(s) 80-96
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2021. Published by Science Publishing Group

Keywords

Nonlinear Optics, Gold Cluster, Electric Field, Density Functional Theory

References
[1] Mirigliano, M., & Milani, P. (2021). Electrical conduction in nanogranular cluster-assembled metallic films. ADV PHYS-X, 6 (1), 1908847.
[2] Song, L., Niedermeier, M. A., Körstgens, V., Löhrer, F. C., Chen, Y., Roth, S. V., & Müller-Buschbaum, P. (2020). In situ study of sputtering nanometer-thick gold films onto 100- nm-thick spiro-OMeTAD Films: implications for perovskite solar cells. ACS Appl. Nano Mater., 3, 5987−5994.
[3] Pečinka, L., Peña‑Méndez, E. M., Conde‑González, J. E., & Havel, J. (2021). Laser ablation synthesis of metal‑doped gold clusters from composites of gold nanoparticles with metal organic frameworks. Sci. Rep., 11, 4656.
[4] Liu, L., & Corma, A. (2020). Evolution of isolated atoms and clusters in catalysis. Trends. Chem., 2 (4), 383-400.
[5] Gao, M., Nakahara, M., Lyalin, A., & Taketsugu, T. (2021). Catalytic activity of gold clusters supported on the h-BN/Au (111) surface for the hydrogen evolution reaction. J. Phys. Chem. C, 125, 1334–1344.
[6] Zhang, X. P., Huang, K. Y., He, S. B., Peng, H. P., Xia, X. H., Chen, W., & Deng, H. H. (2021). Single gold nanocluster probe-based fluorescent sensor array for heavy metal ion discrimination. J. Hazard. Mater., 405, 124259.
[7] Mondal, K., Biswas, S., Singha, T., Chatterjee, U., Datta, P. K., & Kumbhakar, P. (2021). Enhanced optical power limiting and visible luminescence in colloidal dispersion of ultra-small Au nanoclusters synthesized by single-pot chemical technique. J. Mol. Liq., 322, 114909.
[8] Jagannathana, A., Rajaramakrishnaa, R., Rajashekarab, K. M., Gangareddyc, J., Pattar K. V., Rao S. V., Eraiah B., Angadi V. J., Kaewkhaoe, J., & Kothan, S. (2020). Investigations on nonlinear optical properties of gold nanoparticles doped fluoroborate glasses for optical limiting applications. J. Non-Cryst. Solids, 538, 120010.
[9] Sugiuchi, M., Zhang, M., Hakoishi, Y., Shichibu, Y., Horimoto, N. N., Yamauchi, Y., Ishida, Y., & Konishi, K. (2020). Aggregation-mode-dependent optical properties of cationic gold clusters: formation of ordered assemblies in solution and unique optical responses. J. Phys. Chem. C, 124, 16209–16215.
[10] Lou‑Franco, J., Das, B., Elliott, C., & Cao, C. (2021). Gold nanozymes: from concept to biomedical applications. Nano-Micro Lett., 13, 10.
[11] Zhang, Y., Li, S., Liu, H., Long, W., & Zhang, X. D. (2020). Enzyme-like properties of gold clusters for biomedical application. Front. Chem., 8, 219.
[12] Zhu, S., Wang, X., Cong, Y., & Li. L. (2020). Regulating the optical properties of gold nanoclusters for biological applications. ACS Omega, 5, 22702−22707.
[13] Bai, X., Wang, Y., Song, Z., Feng, Y., Chen, Y., Zhang, D., & Feng, L. (2020). The basic properties of gold nanoparticles and their applications in tumor diagnosis and treatment. Int. J. Mol. Sci., 21, 2480.
[14] Fan, M., Han, Y., Gao, S., Yan, H., Cao, L., Li, Z., Liang, X. J., & Zhang, J. (2020). Ultrasmall gold nanoparticles in cancer diagnosis and therapy. Theranostics, 10 (11), 4944-4957.
[15] Kim, J., Chun, S. H., Amornkitbamrung, L., Song, C., Yuk, J. S., Ahn, S. Y., Kim, B. W., Lim, Y. T., Oh, B. K., & Um, S. H. (2020). Gold nanoparticle clusters for the investigation of therapeutic efficiency against prostate cancer under near-infrared irradiation. Nano Converg., 7 (1), 5.
[16] Antoine, R., & Bonačić-Koutecký, V. (2018). Liganded silver and gold quantum clusters. Towards a new class of nonlinear optical nanomaterials. SpringerBriefs in Materials, pp 5-27.
[17] Russier-Antoine, I., Bertorelle, F., Vojkovic, M., Rayane, D., Salmon, E., Jonin, C., Dugourd, P., Antoine, R. & Brevet, P. F. (2014). Non-linear optical properties of gold quantum clusters. The smaller the better. Nanoscale, 6, 13572-13577.
[18] Philip, R., Chantharasupawong, P., Qian, H., Jin, R. & Thomas, J. (2012). Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals. Nano Lett., 12, 4661-4667.
[19] Knoppe, S., Häkkinen, H., & Verbiest, T. (2015). Nonlinear optical properties of thiolate-protected gold clusters: a theoretical survey of the first hyperpolarizabilities. J. Phys. Chem. C, 119, 27676-27682.
[20] Knoppe, S., Vanbel, M., Cleuvenbergen, S. V., Vanpraet, L., Bürgi, T., & Verbiest, T. (2015). Nonlinear optical properties of thiolate-protected gold clusters. J. Phys. Chem. C, 119, 6221-6226.
[21] Grobmann, S., Friedrich, D., Karolak, M., Kullock, R., Krauss, E., Emmerling, M., Sangiovanni, G., & Hecht, B. (2019). Nonclassical optical properties of mesoscopic gold. Phys. Rev. Lett., 122, 246802.
[22] Bertorelle, F., Russier-Antoine, I., Calin, N., Comby-Zerbino, C., Bensalah-Ledoux, A., Guy, S., Dugourd, P., Brevet, P. F., Sanader, Ž., Krstić, M., Bonačić-Koutecký, V. & Antoine, R. (2017). Au10(SG)10: a chiral gold catenane nanocluster with zero confined electrons. Optical properties and first-principles theoretical analysis. J. Phys. Chem. Lett., 8 (9), 1979-1985.
[23] Barbosa-Silva, R., Silva-Neto, M. L. D., Bain, D., Modesto-Costa, L., Andrade-Fiho, T. S. D., Manzoni, V., Patra, A., & Araujo, C. B. D. (2020). Observation and analysis of incoherent second-harmonic generation in gold nanoclusters with six atoms. J. Phys. Chem. C, 124, 15440–15447.
[24] Hamouda, R., Bellina, B., Bertorelle, F., Compagnon, I., Antoine, R., Broyer, M., Rayane, D., & Dugourd, P. (2010). Electron emission of gas-phase [Au25(SG)18-6H]7- gold cluster and its action spectroscopy. J. Phys. Chem. Lett., 1, 3189-3194.
[25] Steerteghem, N. V., Clays, K., Verbiest, T., & Cleuvenbergen, S. V. (2017). Third-harmonic scattering for fast and sensitive screening of the second hyperpolarizability in solution. Anal. Chem., 89 (5), 2964-2971.
[26] Bertorelle, F., Moulin, C., Soleihac, A., Comby-Zerbino, C., Dugourd, P., Russier-Antoine, I., Brevet, P. F., & Antoine, R. (2018). Bulky counterions: enhancing the two-photon excited fluorescence of gold nanoclusters. Chem. Phys. Chem., 19 (2), 165-168.
[27] Ramakrishna, G., Varnavski, O., Kim, J., Lee, D., & Goodson, T. (2008). Quantum-sized gold clusters as efficient two-photon absorbers. J. Am. Chem. Soc., 130 (15), 5032-5033.
[28] Iliopoulos, K., Athanasiou, D., Meristoudi, A., Vainos, N., Pispas, S., & Couris, S. (2008). Nonlinear optical properties of Au nanoclusters encapsulated into hybrid block copolymer micelles. Phys. Stat. sol., 205 (11), 2635-2638.
[29] Rojas-Cervellera, V., Rovira, C., & Akola, J. (2015). How do water solvent and glutathione ligands affect the structure and electronic properties of Au25(SR)18-. J. Phys. Chem. Lett., 6, 3859–3865.
[30] Gürdal, E., Horneber, A., Shaqqura, N., Meixner, A. J., Kern, D. P., Zhang, D., & Fleischer, M. (2020). Enhancement of the second harmonic signal of nonlinear crystals by self-assembled gold nanoparticles. J. Chem. Phys., 152, 104711.
[31] Gomes, A. S. L., Maldonado, M., Menezes, L. D. S., Acioli, L. H., Araújo, C. B. D., Dysart, J., Doyle, D., Johns, P., Naciri, J., Charipar, N., & Fontana, J. (2020). Linear and third-order nanlinear optical properties of self-assembled plasmonic gold metasurfaces. Nanophotonics 9 (4), 725-740.
[32] Rout, A., Boltaev, G. S., Ganeev, R. A., Fu, Y., Maurya, S. K., Kim, V. V., Rao, K. S., & Guo, C. (2019). Nonlinear optical studies of gold nanoparticle films. Nanomaterials, 9, 291.
[33] Panoiu, N. C., Sha, W. E. I., Lei, D. Y., & Li, G. C. (2018). Nonlinear optics in plasmonic nanostructures. J. Opt., 20, 083001.
[34] Gruene, P., Butschke, B., Lyon, J. T., Rayner, D. M., & Fielicke, A. (2014). Far-IR spectra of small neutral gold clusters in the gas phase. Z. Phys. Chem., 228 (4-5), 337-350.
[35] Loginova, A. S., Savintseva, L. A., & Ignatov, S. K. (2019). Structure and electronic excitation spectra of low-lying isomers of Aun clusters (n=2-20). A DFT study. Computational and Theoretical Chemistry, 1170, 112637.
[36] Walker, A. V. (2005). Structure and energetics of small gold nanoclusters and their positive ions. J. Chem. Phys., 122, 094310.
[37] Zanti, G., & Peeters, D. (2013). Electronic structure analysis of small gold clusters Aum (m≤16) by density functional theory. Theor. Chem. Acc., 132, 1300.
[38] Assadollahzadeh, B., & Schwerdtfeger, P. (2009). A systematic search for minimum structures of small gold clusters Aun (n=2–20) and their electronic properties. J. Chem. Phys., 131, 064306.
[39] Singh, N. B., & Sarkar, U. (2015). Geometry, chemical reactivity and Raman spectra of gold clusters. Cogent Chem., 1, 1076713.
[40] Pyykkö, P. (2004). Theoretical chemistry of gold. Angew. Chem. Int. Ed., 43, 4412-4456.
[41] Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys., 82 (1), 299-310.
[42] Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys., 82 (1), 270-283.
[43] Wadt, W. R., & Hay, P. J. (1985). Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys., 82, 284-298.
[44] Cowan, R. D., & Griffin, D. C. (1976). Approximate relativistic corrections to atomic radial wave functions. J. Opt. Soc. Am., 66 (10), 1010-1014.
[45] Schwerdtfeger, P., & Nagle, J. K. (2019). 2018 Table of static dipole polarizabilities of the neutral elements in the periodic table. Mol. Phys., 117 (9-12), 1200-1225.
[46] Likura, H., Tsuneda, T., Yanai, T., & Hirao, K. (2001). A long-range correction scheme for generalized-gradient-approximation exchange functionals. J. Chem. Phys., 115, 3540-3544.
[47] Piela, L. (2007). Ideas of Quantum Chemistry. 1st ed., Elsevier B. V., pp 615-647.
[48] Kdikara, M. S., Stranger, R., & Humphrey, M. G. (2018). Computational studies of the nonlinear optical properties of organometallic complexes. Coord. Chem. Rev., 375, 389-409.
[49] Tarazkar, M., Romanov, D. A., & Levis, R. J. (2015). Theoretical study of second-order hyperpolarizability for nitrogen radical cation. J. Phys. B: At. Mol. Opt. Phys., 48 (9), 094019.
[50] Rice, J. E. (1990). Frequency dependent hyperpolarizabilities with application to formaldehyde and methyl fluoride. J. Chem. Phys., 93, 8828.
[51] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. Gaussian 09, Gaussian, Inc., Wallingford, Revision D. 01 (2013).
[52] Denninngton, R. D., Keith, T. A., & Millam, J. M. GaussView 5.0.8, 2000-2008.
[53] OˊBoyle, N. M., Tenderholt, A. L., & Langner, K. M. (2008). A library for package‐independent computational chemistry algorithms. J. Comp. Chem., 29, 839-845.
[54] Glendening, E. D., Reed, A. E., Carpenter, J. E., & Weinhold. F., NBO Version 3.
[55] Choi, Y. C., Pak, C., & Kim, K. S. (2006). Electric field effects on water clusters (n=3-5): systematic ab initio study of structures, energetics and transition states. J. Chem. Phys., 124, 094308.
[56] Stuyver, T., Danovich, D., Joy, J., & Shaik, S. (2019). External electric field effects on chemical structure and reactivity. WIREs Comput. Mol. Sci., 10 (2), e1438.
[57] Chanana, G., Batra, K., & Prasad, V. (2019). Exploring response of Li2 molecule to external electric field: a DFT and SAC-CI study. Computational and Theoretical Chemistry, 1169, 112620.
[58] Wang, J., Yang, M., Wang, G., & Zhao, J. (2003). Dipole polarizabilities of germanium clusters. Chem. Phys. Lett., 367 (3-4), 448–454.
[59] Janjua, M. R. S. A., Mahmood, A., Nazar, M. F., Yang, Z., & Pan, S. (2014). Electronic absorption spectra and nonlinear optical properties of Ruthenium acetylide complexes: a DFT study toward the designing of new high NLO response compounds. Acta Chim. Slov., 61, 382-390.
[60] Janjua, M. R. S. A. (2018). Structural properties and nonlinear optical responses of halogenated compounds: a DFT investigation on molecular modelling. Open Chem., 16, 978-985.
[61] Li, H., Xu, H., Shen, X., Han, K., Bi, Z., & Xu, R. (2016). Size-, electric-field-, and frequency-dependent third-order nonlinear optical properties of hydrogenated silicon nanoclusters. Scientific Reports, 6, 28067.
Cite This Article
  • APA Style

    Mahnaz Jabbarzadeh Sani. (2021). Electric Field Effects on Neutral Gold Clusters Au2-10: A First-Principles Theoretical Survey of the First- and Second-Order Hyperpolarizabilities. Science Journal of Chemistry, 9(4), 80-96. https://doi.org/10.11648/j.sjc.20210904.11

    Copy | Download

    ACS Style

    Mahnaz Jabbarzadeh Sani. Electric Field Effects on Neutral Gold Clusters Au2-10: A First-Principles Theoretical Survey of the First- and Second-Order Hyperpolarizabilities. Sci. J. Chem. 2021, 9(4), 80-96. doi: 10.11648/j.sjc.20210904.11

    Copy | Download

    AMA Style

    Mahnaz Jabbarzadeh Sani. Electric Field Effects on Neutral Gold Clusters Au2-10: A First-Principles Theoretical Survey of the First- and Second-Order Hyperpolarizabilities. Sci J Chem. 2021;9(4):80-96. doi: 10.11648/j.sjc.20210904.11

    Copy | Download

  • @article{10.11648/j.sjc.20210904.11,
      author = {Mahnaz Jabbarzadeh Sani},
      title = {Electric Field Effects on Neutral Gold Clusters Au2-10: A First-Principles Theoretical Survey of the First- and Second-Order Hyperpolarizabilities},
      journal = {Science Journal of Chemistry},
      volume = {9},
      number = {4},
      pages = {80-96},
      doi = {10.11648/j.sjc.20210904.11},
      url = {https://doi.org/10.11648/j.sjc.20210904.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sjc.20210904.11},
      abstract = {Herein we report the density functional theory (DFT) calculations of nonlinear optical (NLO) properties of neutral gold clusters Aun (n=2-10) applying long-range corrected LC-M06L functional and Los-Alamos National Laboratory double-ζ polarized basis set. The effects of the incident frequency on the first and second-order hyperpolarizability together with the influence of the external electric field on the frontier orbitals of neutral gold clusters are investigated. It is found that the application of external electric field can increase or decrease the gap energy of neutral gold clusters depending on the direction and magnitude of the applied field. More importantly, by correctly controlling the direction and magnitude of the external electric field, reactive gold clusters having low gap energies can be achieved. Furthermore, the external electric field has more important effect on the virtual orbitals of gold hexamer and decreases the energy of these orbitals along the directions parallel to the molecular plane, resulting in low-energy excitations. The low-energy excitations are expected to play important role in the high second-order hyperpolarizability and better response to the applied field. The third-order nonlinear (NLO) properties of gold hexamer are also strongly affected by the frequency of the incident light and thus can be tuned using the incident frequency for applications. The present work may propose new strategies for enhancing the nonlinear optical response of neutral gold clusters.},
     year = {2021}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Electric Field Effects on Neutral Gold Clusters Au2-10: A First-Principles Theoretical Survey of the First- and Second-Order Hyperpolarizabilities
    AU  - Mahnaz Jabbarzadeh Sani
    Y1  - 2021/07/29
    PY  - 2021
    N1  - https://doi.org/10.11648/j.sjc.20210904.11
    DO  - 10.11648/j.sjc.20210904.11
    T2  - Science Journal of Chemistry
    JF  - Science Journal of Chemistry
    JO  - Science Journal of Chemistry
    SP  - 80
    EP  - 96
    PB  - Science Publishing Group
    SN  - 2330-099X
    UR  - https://doi.org/10.11648/j.sjc.20210904.11
    AB  - Herein we report the density functional theory (DFT) calculations of nonlinear optical (NLO) properties of neutral gold clusters Aun (n=2-10) applying long-range corrected LC-M06L functional and Los-Alamos National Laboratory double-ζ polarized basis set. The effects of the incident frequency on the first and second-order hyperpolarizability together with the influence of the external electric field on the frontier orbitals of neutral gold clusters are investigated. It is found that the application of external electric field can increase or decrease the gap energy of neutral gold clusters depending on the direction and magnitude of the applied field. More importantly, by correctly controlling the direction and magnitude of the external electric field, reactive gold clusters having low gap energies can be achieved. Furthermore, the external electric field has more important effect on the virtual orbitals of gold hexamer and decreases the energy of these orbitals along the directions parallel to the molecular plane, resulting in low-energy excitations. The low-energy excitations are expected to play important role in the high second-order hyperpolarizability and better response to the applied field. The third-order nonlinear (NLO) properties of gold hexamer are also strongly affected by the frequency of the incident light and thus can be tuned using the incident frequency for applications. The present work may propose new strategies for enhancing the nonlinear optical response of neutral gold clusters.
    VL  - 9
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Chemistry Department, College of Science, Shiraz University, Shiraz, Iran

  • Sections