This study is an introduction to visualize Minkowskian (n, 1) geometry for all n ³1. The Minkowski geometry naturally encodes the ideas of inertial frames, time and space dilation. Moreover, it also includes studying Minkowski patch which is the natural structure of Minkowski space.
| Published in | Pure and Applied Mathematics Journal (Volume 3, Issue 6) |
| DOI | 10.11648/j.pamj.20140306.14 |
| Page(s) | 132-136 |
| Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
| Copyright |
Copyright © The Author(s), 2014. Published by Science Publishing Group |
Minkowski Space, Einstein Space, Minkowski Patch, Improper Point, Crooked Surface
| [1] | Izumiya, S. and Saji, K., The mandala of Legendrian dualities for pseudo-spheres in Lorentz-Minkowski space and "flat" spacelike surface, Journal of Singularities,Vol.2, (2010), 92—127. |
| [2] | L´opez, R., Differential Geometry of Curves and Surfaces in Lorentz-Minkowski space, Mini-Course taught at the Instituto de Matem´atica e Estat´ıstica (IME-USP) University of Sao Paulo, Brasil, October 18, 2008. |
| [3] | Izumiya, S. and Yıldırım, H., Slant Geometry of Spacelike Hypersurfaces in the Lightcone, Journal of the Mathematical Society of Japan, Vol. 63, Number 3 (2011), 715—752. lp |
| [4] | Goldman, W. M., Crooked Surfaces and Anti-De Sitter Geometry, arXiv:1302.4911[math.DG] from Cornell University Library, February 20, 2013. |
| [5] | Barbot, T., Charette, V., Drumm, T., Goldman, W. M., and Melnick, K., A primer on the (2 + 1) Einstein universe, Recent Developments in Pseudo-Riemannian Geometry journal, European Mathematical Society, (2008), 179—230. |
| [6] | Drumm, T. and Goldman, W. M., The geometry of crooked planes, Journal of Topology Vol. 38 (1999), No. 2, 323—351. |
| [7] | Burelle, J. P., Charette, V., Drumm, T. and Goldman, W. M., Crooked Halfspaces, arXiv:1211.4177 [math.DG] from Cornell University Library, October 3, 2012. |
APA Style
Rania Bahgat Mohamed Amer. (2014). Visualization of Minkowski Patch. Pure and Applied Mathematics Journal, 3(6), 132-136. https://doi.org/10.11648/j.pamj.20140306.14
ACS Style
Rania Bahgat Mohamed Amer. Visualization of Minkowski Patch. Pure Appl. Math. J. 2014, 3(6), 132-136. doi: 10.11648/j.pamj.20140306.14
AMA Style
Rania Bahgat Mohamed Amer. Visualization of Minkowski Patch. Pure Appl Math J. 2014;3(6):132-136. doi: 10.11648/j.pamj.20140306.14
@article{10.11648/j.pamj.20140306.14,
author = {Rania Bahgat Mohamed Amer},
title = {Visualization of Minkowski Patch},
journal = {Pure and Applied Mathematics Journal},
volume = {3},
number = {6},
pages = {132-136},
doi = {10.11648/j.pamj.20140306.14},
url = {https://doi.org/10.11648/j.pamj.20140306.14},
eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.pamj.20140306.14},
abstract = {This study is an introduction to visualize Minkowskian (n, 1) geometry for all n ³1. The Minkowski geometry naturally encodes the ideas of inertial frames, time and space dilation. Moreover, it also includes studying Minkowski patch which is the natural structure of Minkowski space.},
year = {2014}
}
TY - JOUR T1 - Visualization of Minkowski Patch AU - Rania Bahgat Mohamed Amer Y1 - 2014/12/08 PY - 2014 N1 - https://doi.org/10.11648/j.pamj.20140306.14 DO - 10.11648/j.pamj.20140306.14 T2 - Pure and Applied Mathematics Journal JF - Pure and Applied Mathematics Journal JO - Pure and Applied Mathematics Journal SP - 132 EP - 136 PB - Science Publishing Group SN - 2326-9812 UR - https://doi.org/10.11648/j.pamj.20140306.14 AB - This study is an introduction to visualize Minkowskian (n, 1) geometry for all n ³1. The Minkowski geometry naturally encodes the ideas of inertial frames, time and space dilation. Moreover, it also includes studying Minkowski patch which is the natural structure of Minkowski space. VL - 3 IS - 6 ER -