| Peer-Reviewed

Hydrostatic Pressure Gradients and a New Membrane-glymphatic Theory of Primary Glaucoma

Received: 23 January 2022     Accepted: 8 February 2022     Published: 16 February 2022
Views:       Downloads:
Abstract

The paper describes a novel theory of primary glaucoma etiopathogenesis based on a new understanding of the glymphatic system of the eye. Glymphatic flow routes of the eye include the vitreous body, uveal tract, paravascular spaces, and the retina. There are different pressure gradients of the intraocular fluid flow within the divided central channel of the vitreous body. In normal conditions above the foveola there is highly positive pressure gradient whereas above the optic disc it is 3 times lower. The retinal pigment epithelium is responsible for water and metabolic exchanges between choroid and the vitreous, therefore may contribute to intra-ocular fluid accumulation. Impairment of the outer blood-ocular and/or blood-aqueous barriers is the key pathogenic element of glaucoma including secondary forms due to uveitis. A disbalance of the pressure gradients above the macula and above the optic disc leads to fluid accumulation above the latter. An abundant intra-retinal fluid flow through the glymphatic pathways in the outer and inner plexiform layers, formed by Muller cell processes, contributes to accumulation of the interstitial fluid before the lamina cribrosa. Excessive interstitial fluid from the retina passes not only through the retinal pigment epithelium to choroid but also through paravascular spaces to the optic disc cup and discharges partly back to the vitreous body through the prevascular vitreous fissures. There is an interstitial fluid flow existing through paravascular spaces, the plexiform layers of retina and along the axons of ganglion cells to the optic nerve and its sheath where excessive fluid is absorbed into the subarachnoid space. The RPE plays a major role in glaucoma etiopahogenesis, probably acting as a regulator of fluid transport in the eye.

Published in International Journal of Ophthalmology & Visual Science (Volume 7, Issue 1)
DOI 10.11648/j.ijovs.20220701.13
Page(s) 14-25
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2022. Published by Science Publishing Group

Keywords

Glaucoma, Optic Nerve, Glymphatic Flow, Hydrostatic Pressure Gradient, Retina, Neuroglia, Cerebrospinal Fluid, Intraocular Pressure

References
[1] Quigeley H, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol, 2006; 90 (3): 262-267.
[2] Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid ß. Sci Transl Med, 2012; 4 (147): 147-151. doi: 10/1126/scitranslmed.3003748.
[3] Ringstad G, Valnes LM, Dale AM, Pripp AH, et al. Brain-wide glymphatic enhancement an d clearance in humans assessed with MRI. JCI Insight. 2018; 3 (13): e121537. doi: 10.1172/jci.insight.121537.
[4] Jacobsen HH, Ringstad G, Jorstad OK, et al. The human visual pathway communicates directly with the subarachnoid space. Invest Ophthalmol Vis Sci. 2019; 60: 2773-2780. doi: 10.1167/iovs.19-26997.
[5] Mestre H, Mori Y, Nedergaard M. The brain glymphatic system: current controversies. Trends in Neurosciences, 2020; 43 (7): 458-466. doi: 10.1016/j.tins.2020.04.003.
[6] Bakker E, Bascani BJ, Arbel-Ornath M, et al. Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol, 2016; 36: 181-194. doi: 10.1007/s10571-015-0273-8.
[7] Wostyn P. The glymphatic system: a new player in ocular diseases? Invest Ophthalmol Vis Sci. 2016; 57: 5426-5427. doi: 10.1167/iovs.16-20262.
[8] Wostyn P, De Groot V, Van Dam D, et al. The glymphatic hypothesis of glaucoma: a unifying concept incorporating vascular, biomechanical, and biochemical aspects of the disease. BioMed Res Int. 2017, article ID 5123148. doi: 10/1155/2017/5123148.
[9] Wostyn P, Van Dam D, Audenaert K, et al. A new glaucoma hypothesis: a role of glymphatic system dysfunction. Fluids Barriers CNS, 2015; 12: 16. doi: 10.1186/s12987-015-0012-z.
[10] Petzold A. Retinal glymphatic system: an explanation for transient retinal layer volume changes? Brain, 2016; 139 (11); 2816-2819. doi: 10.1093/brain/aww239.
[11] Ferris CF. Rethinking the conditions and mechanism for glymphatic clearance. Front /neurosci. 2021, 15: 624690. doi: 10.3389/fnins.2021.624690.
[12] [Petrov S. Yu. Lymphatic system of the eye. Russian journal of glaucoma. 2011; 3: 58-62 (In Russ)].
[13] Subileau M, Vittet D. Lymphatics in eye fluid homeostasis: minor contributors or significant actors? Biology 2021, 10, 582. doi: 10.3390/biology10070582.
[14] Yücel YH, Johnston MG, Patel M, et al. Identification of lymphatics in the ciliary body of the human eye: a novel “uveolymphatic” outflow pathway. Exp Eye Res. 2009; 89 (5): 810-819. doi: 10.1016/j.exer.2009.08.010.
[15] Mathieu E, Gupta N, Ahari A, et al. Evidence for cerebrospinal fluid entry into optic nerve via glymphatic pathway. Invest Ophthalmol Vis Sci. 2017; 58: 4784-4791. doi: 10.1167/iovs.17-22290.
[16] Wang X, Lou N, Eberhardt A, Yang Y, et al. An ocular glymphatic clearance system removes ß-amyloid from the rodent eye. Sci. Transl. Med. 2020; 12, eaaw3210. doi: 10.1126/scitranslmed.aaw3210.
[17] Mathieu E, Gupta N, Paczka-Giorgi LA, et al. Reduced cerebrospinal fluid inflow to the optic nerve in glaucoma. Invest Ophthalmol Vis Sci. 2018; 59: 5876-5884.
[18] Marshall GE, Konstas AG, Reid GG, et al. Collagens in the aged human macula. Graefes Arch Clin Exp Ophthalmol 1994; 232:: 133-140.
[19] Chernykh VV, Bgatova NP, Orlov NB, et al. Local inflammatory process as a possible manifestation of intraocular fluid uveolymphatic outflow defects in glaucoma. Part 2. National journal of glaucoma. 2018; 17 (1): 3-11 (in Russ)] doi: 10.25700/NGJ.2018.02.01.
[20] Dos Santos Prata T, Navajas EV, Soares Melo Jr LA et al. Aqueous humor protein concentration in patients with primary open-angle glaucoma under clinical treatment. Arq Bras Oftalmol. 2007; 70 (2) doi: 10.1590/s0004-27492007000200006.
[21] Huang OS, Seet L-F, Ho HW, et al. Altered iris aquaporin expression and aqueous humor osmolality in glaucoma. Invest Ophthalmol Vis Sci. 2021; 62 (2): 34. doi: 10/1167/iovs.62.2.34.
[22] Benoist d’Azy C, Pereira B, Chambaretta F, Dutheil F. Oxidative and anti-oxidative stress markers in chronic glaucoma: a systematic review and meta-analysis. PLoS ONE 11 (12): e0166915. doi: 10.1371/journal.pone.0166915.
[23] [Egorov EA. Azhigalieva MN. Possible mechanisms of vitreous body participans in primary glaucoma pathogenesis. Vestnik Ophthalmologii. 1993; 109 (2): 6-9. (in Russ.)].
[24] Yan Z, Liao H, Chen H, et al. Elevated intraocular pressure induces amyloid-ß deposition and taupathy in the lateral geniculate nucleus in a monkey model of glaucoma. Inv Ophthalmol Vis Sci. 2017 (58): 5434-5443. doi: 10.1167/iovs.17-2312.
[25] Cao J, Bian L, Zhou P, Tu J. Watch out for the special location of intraventricular silicone oil following an intraocular tamponade – a 10-year follow-up case report based on CT/MRI. BMC Ophthalmology. 2019; 19: 269.
[26] Boren RA, Carson DC, Gupta AS, Dewan VN, Hogan RN. Retrolaminar migration of intraocular silicone oil. Journal of neuro-ophthalmology 2016; 36: 439-447. doi: 10.1097/WNO.0000000000000440.
[27] Paquet C., Boissonnot M, Roger F et al. Abnormal retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Neurosci. Lett. 2007; 420: 97-99. DOI: 10.1016/j.neulet.2007.02.090.
[28] Berdahl JP, Fautsch MP, Stinnett SS, Allingham RR. Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: a case-control study. Invest Ophthalmol Vis Sci. 2008; 49: 5412-5418.
[29] Goldberg I, Clement CI. The water drinking test. Am J Ophthalmol, 2010; 150 (4): 447-449. doi: 10.1016/j.ajo.2010.06.035.
[30] Carbrerizo J, Urcola JH, Vecino E. Changes in surface tension of aqueous humor in anterior segment ocular pathologies. Vision (Basel) 2016; 1 (1): 6. doi: 10.3390/vision1010006.
[31] [Egorov EA, Eskina EN, Gvetadze AA et al. Myopic eyes: morphometric features and their influence on visual function. RMJ. Clinical Ophthalmology. 2015; 4: 186-190 (in Russ)].
[32] [Faizrahmanov RR, Zainetdinov AF, Salavatova VF. Vitreomacular interface structure in pathology of the retina. Point of view. Vostok-Zapad, 2017; 2: 82-84. (in Russ)].
[33] [Strakhov VV, Alekseev VV, Ermakova AV. Assymetry of the tonometric, gemodynamic and bioretinometric parameters of the twin eyes in normal state and in primary glaucoma. Russian Journal of Glaucoma, 2018; 4: 11-16 (in Russ)].
[34] Savini G, Zaini M, Careli V. Correlation between retinal nerve fibre layer thickness and optic nerve size: an optical coherence tomography study. Brit J Ophthalmol. 2005; 89 (4): 489-495.
[35] [Sorokin EL, Marchenko AN, Danilov OV. Morphometrical datas of intraocular structures in hyperopic patients at different age groups and finding of risk factors of phakomorphik glaucoma. Fareast medical journal, 2009; 3: 22 (in Russ)].
[36] [Nesterov A. P. Glaucoma 2nd edition, 2008 Medical informational agency Moscow, p. 41 (in Russ)].
[37] Klarica M, Rados M, Erceg G, Petosic A, Jurjevic I, Oreskovic D. The influence of body position on cerebrospinal fluid pressure gradient and movement in cats with normal and impaired craniospinal communication. PLoS One. 2014; 9 (4): e95229. doi: 10.1371/journal.pone.0095229.
[38] Liu D, Michon J. Measurement of the subarachnoid pressure of the optic nerve in human subjects. Am J Ophthalmol, 1995; 119: 81-5.
[39] Morgan WH, Yu DY, Alder VA et al. The correlation between cerebrospinal fluid pressure and retrolaminal tissue pressure. Invest Ophthalmol Vis Sci 1998; 39 (8): 1419-28. PMID: 9660490.
[40] Engelbert M. A new understanding of vitreous structure. Review, 2016 http://www.reviewofophthalmology.com/article/a-new-understanding-of-vitreous-structure
[41] Leong BCS, Fragiotta S, Kaden TR, et al. OCT en face analysis of the posterior vitreous reveals topographic relationships among premacular bursa, prevascular fissures, and cisterns. J. Ophthalmol. 2020, 4 (1): 84-89. doi: 10.1016/j.oret.2019.09.002.
[42] [Makhacheva Z. A. New in anatomy of the vitreous body. Moscow, 2006, p. 10-13 (in Russ)] http://eyepress.ru/referateng.aspx?45227doi:org/10.25276/978-5-903624-24-9.
[43] [Selected lectures in Ophthalmology. Lection # 12, p. 3. Glaucoma Part 2 http://eyepress.ru/article.aspx?19446 (in Russ)].
[44] Delaunay K, Khamsy L, Kowalczuk L et al. Glial cells of the human fovea. Mol Vis 2020; 26: 235-245.
[45] Morishita S, Sato T, Oosuka S, et al. Expression of lymphatic markers in the Berger’s space and bursa premacularis. Int J Mol Sci 2021; 22 (4), 2086. doi: 10.3390/ijms22042086.
[46] Balk LJ, Killestein J, Polman CH, et al. Microcystic macular oedema confirmed, but not specific for multiple sclerosis. Brain, 2012: 135: 1-2. doi: 10.1093/brain/aws216.
[47] Nagelhus EA, Veruki ML, Torp R, et al. Aquaporin-4 water channel protein in the rat retina and optic nerve: Polaryzed expression in Muller cells and fibrous astrocytes. J. Neurosci. 1998, 18: 2506-2519.
[48] Juuti-Uusitalo K, Delporte C, Gregoire F, et al. Aquaporin expression and function in human pluripotent stem cell-derived retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci. 2013; 54 (5): 3510-3519. doi: 10.1167/iovs.13-11800.
[49] Smith D, Lee C-J, Gardiner BS. No flow through the vitreous humor: how strong is the evidence? Prog Ret Eye Res 2020; 78: 100845. doi: 10.1016/j.preteyeres.2020.1000845.
[50] Steinberg RH. Interactions between the retinal pigment epithelium and the neural retina. Doc Ophthalmol. 1985; 60: 327-346.
[51] Strauss O. The Retinal Pigment epithelium in visual function. Physiological reviews, 2005; 85 (3): 845-881. doi: 10.1152/physrev.00021.2004.
[52] Peterson WM, Meggyesy C, Yu K, Sheldon SS. Extracellular ATP activates calcium signaling, ion, and fluid transport in retinal pigment epithelium. J Neurosci. 1997; 17 (7): 2324-2337. doi: 10.1523/JNEUROSCI.17-07-02324.1997.
[53] Reigada D, Mitchell CH. Release of ATP from retinal pigment epithelial cells involves both CFTR and vesicular transport. Am J Physiol Cell Physiol 2005 (288): 132-140. doi: 10.1152/ajpcell.00201.2004.
[54] Dvoryashyna M, Foss AJE, Gaffney EA, Repetto R. Fluid and solute transport across the retinal pigment epithelium: a theoretical model. Journal of the Royal society interface, 2020, 17; 163. Doi: 10.1098/rsif.2019.0735.
[55] Yamane K, Minamoto A, Yamashita H, et al. Proteome analysis of human vitreous proteins. Mol Cell Proteom. 2003, 2, 1177.
[56] Murthy KR, Goel R, Subbannayya Y, Jacob HKC et al. Proteomic analysis of human vitreous humor. Clin Proteom. 2014, 11, 29.
[57] Dreyer EB, Zurakowski D, Schumer RA, et al. Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch Ophthalmol. 1996; 114: 299-305.
[58] Tsuboi S. Fluid movement across the blood-retinal barrier: a review of studies by vitreous fluorophotometry. Jpn J Ophthalmol 1990; 34 (2): 133-41. PMID: 2214357.
[59] Tan PE, Balaratnasingam C, Xu J, et al. Quantative comparison of retinal capillary images derived by speckle variance optical coherence tomography with histology. Invest Ophthalmol Vis Sci, 2015 (56): 3989-3996. doi: 10.1167/iovs.14-15879.
[60] Chandrasekera E, An D, McAllister IL, et al. Three-dimensional microscopy demonstrates series and parallel organization of human peripapillary capillary plexuses. Inv Ophthalmol Vis Sci. 2018; 59: 4327-4344. doi: 10.1167/iovs.18-24105.
[61] Gerli R, Solito R, Weber E, et al. Specific adhesion molecules bind anchoring filaments and endothelial cells in human skin initial lymphatics. Lymphology 2000; 33: 148-157.
[62] Camelo S, Lajavardi L, Bochot A, et al. Drainage of fluorescent liposomes from the vitreous to cervical lymph nodes via conjunctival lymphatics. Ophthalmic Res. 2008; 40: 145. doi: 10.1167/iovs.06-1305.
[63] [Zolotarev AV, Pavlov DV, Nikolaeva GA. Morphology of aquous fluid flows in posterior segment of t he eye. New technologies of eye microsurgery. Vestnik OGU, 2018; (12): 37-39 (in Russ)].
[64] [Baiborodov Y. V. Izmailov A. S. Detachment of the retina caused by the pit of the optic nerve disk and its surgical treatment. Fyodorov Journal of Ophthalmic Surgery. 2017 (4): 20-25. (in Russ)]. doi: 10.25276/0235-4160-2017-4-20-25.
[65] Ouyang Y, Keane PA, Sadda SR et al. Detection of cystoid macular edema with three-dimansional optical coherence tomography versus fluorescein angiography. Invest Ophthalmol Vis Sci. 2010; 51 (10): 5213-18.
[66] [Beisekeeva J, Bezrukov AV, Kochergin SA, et al. Acute transient macular edema after uneventful cataract surgery. Ophthalmology in Russia. 2021; 18 (3): 442-450 doi: 10.18008/1816-5095-2021-3-442-450 (in Russ)].
[67] Hasegawa T, Akagi T, Yoshikawa M et al. Microcystic inner nuclear layer changes and retinal nerve fiber layer defects in eyes with glaucoma. pLoS One. 2015; 10 (6): e0130175. doi: 10.1371/journal.pone.0130175.
[68] [Erichev VP, Petrov S. Yu, Orekhova A, et al. Hypotony maculopathy after glaucoma surgery: pathogenic mechanisms, diagnostic tools, and treatment modalites. Russ Journal of Clin Ophthalmol. 2020; 20 (1): 26-31 (in Russ)] doi: 10.32364/2311-7729-2020-20-1-26-31].
[69] Massa H, Pipis S. Panos GD. Macular edema associated with non-infectious uveitis: pathophysiology, etiology, prevalence, impact and management challenges. Clin Ophthalmol. 2019; 13: 1761-1777.
[70] [Nesterov A. P. The Intraocular pressure. Moscow: Science, 1974, p. 112 (in Russ)] http://www.ngpedia.ru/pg3427798YUxgCA30022128901
[71] [Nesterov AP Glaucoma 2nd ed, 2008 Medical informational agency Moscow, p. 133 (in Russ)].
[72] [Erichev VP, Poleva RP, Hadiri Kh. New capabilities of optical coherence tomography in the diagnostics of primary angle-closure glaucoma. The national Journal glaucoma 2021; 20 (2): 14-22. (in Russ) doi: 10.25700/2078-4104-2021-20-2-14-22].
[73] Booij JC, Baas DC, Beisekeeva J, Gorgels TGMF, Bergen AAB. The dynamic nature of Bruch’s membrane. Prog Eye Ret Res. 2010; 29 (1): 1-18.
[74] Goel M, Mangel SC. Dopamine-mediated circadian and light/dark-adaptive modulation of chemical and electrical synapses in the outer retina. Front. Cell. Neurosci. 15: 647541. doi: 10.3389/fncel.2021.647541.
[75] [Pavlenko TA, Chesnokova NB, Nodel MP, Kim AR, Ugryumov MV. Molecular mechanisms and clinical features of catecholamine regulation disturbance in Parkinson’s disease as basement for early diagnostic methods creation. Acta Naturae, 2020; 12; 2 (45): 52-62 (in Russ.)]. doi: 10.32607/actanaturae.10906.
[76] Klarica M, Rados M, Erceg G, et al. The influence of body position on cerebrospinal fluid pressure gradient and movement in cats with normal and impaired craniospinal communication. PLoS One. 2014; 9 (4): e95229. doi: 10.1371/journal.pone.0095229.
[77] El-Danaf RN, Huberman AD. Characteristic patterns of dendric remodeling in early-stage glaucoma: evidence from genetically identified retinal ganglion cell types. J Neyrosci. 2015; 35 (6): 2329-2343. doi: 10.1523/JNEUROSCI.1419-14.2015.
[78] The organization of the Retina and Visual system. Webvision Book. Outer plexiform layer by Helga Kolb. www.webvision.med.utah.edu.
[79] Nork TM. Aquired color vision loss and possible mechanisms of ganglion cell death in glaucoma. Tr Am Ophth Soc 2000; 98: 331-363.
[80] Luliano L, Fogliato G, Codenotti M. Intrasurgical imaging of subinternal limiting membrane blood diffusion in Terson Syndrome. Case Rep Ophthalmol Med. 2014; 2014: 689793.
[81] Johnson TM, Johnson MW. Pathogenic implications of subretinal gas migration through pits and atypical colobomas of the optic nerve. Arch Ophthalmol. 2004; 122 (12): 1793-1800. doi: 10.1001/archophth.122.12.1793.
[82] Zumbro D, Jampol LM, Folk JC, et al. Macular schisis and detachment associated with presumed acquired enlarged optic nerve head cups. Am J Ophthalmol. 2007; 144 (1): 70-74. doi: 10.1016/j.ajo.2007.03.027.
[83] Theodossiadis GP, Panopoulus M, Kolia KG, et al. Long-term study of patients with congenital pit of the optic nerve and persistent macular detachment. Acta Ophthalmol. 1992; 70 (4): 495-505. doi: 10.1111/j.1755-3768.1992.tb02120.x.
[84] Maatta M, Tervahartiala T, Vesti E, et al. Levels and activation of matrix metalloproteinases in aqueous humor are elevated in uveitis-related secondary glaucoma. Glaucoma. 2006; 15 (3): 229-237.
[85] [Strakhov VV, Alexeev VV, Yartsev AV. Towards the question of pathogenesis of POAG: glaucomatous neuropathy. Russian Journal of Clinical Ophthalmology. 2010; 4: 110 (in Russ)].
[86] Garcia-Medina JJ, del-Rio-Vellosillo M, Palazon-Cabanes A et al. Glaucomatous maculopathy: thickness differences on inner and outer macular layers between ocular hypertension and early primary open-angle glaucoma using 8*8 posterior pole algorithm of SD-OCT. J. Clin. Med. 2020, 9, 1503; doi: 10.3390/jcm9051503.
[87] Egorova I. V., Shamshinova A. M., Erichev V. P. Functional methods in glaucoma diagnosis. Vestnik oftalmologii Russian annals of Ophthalmology, 2001, 117 (6): 38-40 (in Russ).
[88] Nork TM. Swelling and loss of photoreceptors in chronic human and experimental glaucomas. Arch Ophthalmol. 2000; 118: 235-245.
[89] Fan N, Huang N, Lam DSC, Leung C K. Measurement of photoreceptor layer in glaucoma: a spectral-domain optical coherence tomography study. Journal of ophthalmology. 2011; 264803. doi: 10.1155/2011/264803.
[90] Fujihara FMF, de Arruda Mello PA, Lindenmeyer RL et al. Individual macular layer evaluation in normal and glaucomatous eyes. Opht. 2020; 14: 1591-1599. doi: 10.2147/OPTH.S256755.
[91] Janssen P, Naskar R, Moore S, et al. Evidence for glaucoma-induced horizontal cell alterations in the human retina. Ger J Ophthalmol 1997; 5: 378-385.
[92] Grewal DS, Merlau DJ, Giri P, et al. Peripapillary retinal splitting visualized on OCT in glaucoma suspect patients. PloS ONE 12 (8): e018216. doi: 10.1371/journal.pone.0182816.
[93] Fortune B, Ma KN, Gardiner SK, et al. Peripapillary retinoschisis in glaucoma: association with progression and OCT signs of Muller Cell involvement. Invest Ophthalmol Vis Sci. 2018; 59: 2818-2827. doi: 10.1167/iovs.18-24160.
[94] Lee EJ, Kee HJ, Han JC, Kee C. The progression of peripapillary retinoschisis may indicate the progression of glaucoma. Invest Ophthalmol Vis Sci. 2021; 62 (2): 16. doi: 10.1167/iovs.62.2.16.
[95] Nishijima R, Ogawa S, Nishijima E, et al. Factors determing the morphology of peripapillary retinoschisis. Clinical Ophthalmology. 2021; 15: 1293-1300.
[96] Farjard H, Besada E, Frauens BJ. Peripapillary schisis with serous detachment in advanced glaucoma. Optom Vis Sci. 2010; 87 (3): E205-17. doi: 10.1097/OPX.0b013e3181d1dad5.
[97] Liu Y, Baniasadi N, Ratanawongphaibul, Chen TC. Effect of partial posterior vitreous detachment on spectral-domain optical coherence tomography retinal nerve fibre layer thickness measurements. Br J Ophthalmol. 2020; 104 (11): 1524-1527. doi: 10.1136/bjopthalmol-2019-314570.
[98] [Andreev AN, Shvaikin AV, Svetozarskii SN. Papillomacular retinoschizis associated with glaucoma Vestnik ophthalmologii Russian annals of Ophthalmology. 2019; 135 (6): 100-107 (in Russ)] doi: 10.17116/oftalma2019135061100.
[99] Lee WJ, Seong M. Disc hemorrhage following peripapillary retinoschisis in glaucoma: a case report. BMC Ophthalmol, 2021 (21): 253. doi: 10.1186/s12886-021-02010-5.
[100] Booji JC, van Soest S, Swagemakers SMA, Essing AHW, Verkerk AJMH, van der Spek P, Gorgels TGMF, Bergen AAB. Functional annotation of the human retinal pigment epithelium transcriptome. BMC Genomics 2009, 10: 164-182.
Cite This Article
  • APA Style

    Juldyz Beisekeeva, Jamilia Kulumbetova, Serik Beisekeev, Sergei Aleksandrovich Kochergin. (2022). Hydrostatic Pressure Gradients and a New Membrane-glymphatic Theory of Primary Glaucoma. International Journal of Ophthalmology & Visual Science, 7(1), 14-25. https://doi.org/10.11648/j.ijovs.20220701.13

    Copy | Download

    ACS Style

    Juldyz Beisekeeva; Jamilia Kulumbetova; Serik Beisekeev; Sergei Aleksandrovich Kochergin. Hydrostatic Pressure Gradients and a New Membrane-glymphatic Theory of Primary Glaucoma. Int. J. Ophthalmol. Vis. Sci. 2022, 7(1), 14-25. doi: 10.11648/j.ijovs.20220701.13

    Copy | Download

    AMA Style

    Juldyz Beisekeeva, Jamilia Kulumbetova, Serik Beisekeev, Sergei Aleksandrovich Kochergin. Hydrostatic Pressure Gradients and a New Membrane-glymphatic Theory of Primary Glaucoma. Int J Ophthalmol Vis Sci. 2022;7(1):14-25. doi: 10.11648/j.ijovs.20220701.13

    Copy | Download

  • @article{10.11648/j.ijovs.20220701.13,
      author = {Juldyz Beisekeeva and Jamilia Kulumbetova and Serik Beisekeev and Sergei Aleksandrovich Kochergin},
      title = {Hydrostatic Pressure Gradients and a New Membrane-glymphatic Theory of Primary Glaucoma},
      journal = {International Journal of Ophthalmology & Visual Science},
      volume = {7},
      number = {1},
      pages = {14-25},
      doi = {10.11648/j.ijovs.20220701.13},
      url = {https://doi.org/10.11648/j.ijovs.20220701.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijovs.20220701.13},
      abstract = {The paper describes a novel theory of primary glaucoma etiopathogenesis based on a new understanding of the glymphatic system of the eye. Glymphatic flow routes of the eye include the vitreous body, uveal tract, paravascular spaces, and the retina. There are different pressure gradients of the intraocular fluid flow within the divided central channel of the vitreous body. In normal conditions above the foveola there is highly positive pressure gradient whereas above the optic disc it is 3 times lower. The retinal pigment epithelium is responsible for water and metabolic exchanges between choroid and the vitreous, therefore may contribute to intra-ocular fluid accumulation. Impairment of the outer blood-ocular and/or blood-aqueous barriers is the key pathogenic element of glaucoma including secondary forms due to uveitis. A disbalance of the pressure gradients above the macula and above the optic disc leads to fluid accumulation above the latter. An abundant intra-retinal fluid flow through the glymphatic pathways in the outer and inner plexiform layers, formed by Muller cell processes, contributes to accumulation of the interstitial fluid before the lamina cribrosa. Excessive interstitial fluid from the retina passes not only through the retinal pigment epithelium to choroid but also through paravascular spaces to the optic disc cup and discharges partly back to the vitreous body through the prevascular vitreous fissures. There is an interstitial fluid flow existing through paravascular spaces, the plexiform layers of retina and along the axons of ganglion cells to the optic nerve and its sheath where excessive fluid is absorbed into the subarachnoid space. The RPE plays a major role in glaucoma etiopahogenesis, probably acting as a regulator of fluid transport in the eye.},
     year = {2022}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Hydrostatic Pressure Gradients and a New Membrane-glymphatic Theory of Primary Glaucoma
    AU  - Juldyz Beisekeeva
    AU  - Jamilia Kulumbetova
    AU  - Serik Beisekeev
    AU  - Sergei Aleksandrovich Kochergin
    Y1  - 2022/02/16
    PY  - 2022
    N1  - https://doi.org/10.11648/j.ijovs.20220701.13
    DO  - 10.11648/j.ijovs.20220701.13
    T2  - International Journal of Ophthalmology & Visual Science
    JF  - International Journal of Ophthalmology & Visual Science
    JO  - International Journal of Ophthalmology & Visual Science
    SP  - 14
    EP  - 25
    PB  - Science Publishing Group
    SN  - 2637-3858
    UR  - https://doi.org/10.11648/j.ijovs.20220701.13
    AB  - The paper describes a novel theory of primary glaucoma etiopathogenesis based on a new understanding of the glymphatic system of the eye. Glymphatic flow routes of the eye include the vitreous body, uveal tract, paravascular spaces, and the retina. There are different pressure gradients of the intraocular fluid flow within the divided central channel of the vitreous body. In normal conditions above the foveola there is highly positive pressure gradient whereas above the optic disc it is 3 times lower. The retinal pigment epithelium is responsible for water and metabolic exchanges between choroid and the vitreous, therefore may contribute to intra-ocular fluid accumulation. Impairment of the outer blood-ocular and/or blood-aqueous barriers is the key pathogenic element of glaucoma including secondary forms due to uveitis. A disbalance of the pressure gradients above the macula and above the optic disc leads to fluid accumulation above the latter. An abundant intra-retinal fluid flow through the glymphatic pathways in the outer and inner plexiform layers, formed by Muller cell processes, contributes to accumulation of the interstitial fluid before the lamina cribrosa. Excessive interstitial fluid from the retina passes not only through the retinal pigment epithelium to choroid but also through paravascular spaces to the optic disc cup and discharges partly back to the vitreous body through the prevascular vitreous fissures. There is an interstitial fluid flow existing through paravascular spaces, the plexiform layers of retina and along the axons of ganglion cells to the optic nerve and its sheath where excessive fluid is absorbed into the subarachnoid space. The RPE plays a major role in glaucoma etiopahogenesis, probably acting as a regulator of fluid transport in the eye.
    VL  - 7
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Samoylenko Eye Clinic, Moscow, Russian Federation

  • Independent Researcher, Moscow, Russian Federation

  • Independent Researcher, Moscow, Russian Federation

  • Department of Ophthalmology, Russian Medical Academy of Continious Postdiploma Education, Moscow, Russian Federation

  • Sections