We investigated cyanide levels in four cassava varieties and some derived products from Senegal. The study was conducted on fresh tubers by sampling in three longitudinal positions (1/4; 1/2; 3/4) and four radials (A, B, C and D). In addition, the sampling of derived products was carried out by product types (chip dried, graded, unpressed and pressed attieke, gari and flour). Cyanide contents were determined using differential pulse polarography. Results showed that whatever the variety considered, there was no significant difference between the total HCN content in cassava slices (1/4; 1/2; 3/4). Similarly, results from different layers (A, B, C and D) did not highlight the radial variability of the total HCN content. We showed a variable cyanide content (mg HCN/kg fresh material) in cassava varieties: 104.3 ± 3.9; 171.6 ± 5.4; 231.2 ± 10.2; 270.8 ± 12.0 for Kombo, Nigeria, Soya and Gniargui respectively. The detoxification processes (attieke, gari and flour) indicated a reduction rate in excess of 80% and may be effective to reduce the cyanide content in cassava root down to a tolerable level (< 50 mg/kg).
Published in | International Journal of Nutrition and Food Sciences (Volume 2, Issue 5) |
DOI | 10.11648/j.ijnfs.20130205.12 |
Page(s) | 225-231 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2013. Published by Science Publishing Group |
Cassava Root, Varieties, Cyanide, Derived Products, Detoxification
[1] | A.U. Achidi, O.A. Ajayi, M. Bokanga and B. Maziya-Dixon, "The use of cassava leaves as food in Africa". Ecology of Food and Nutrition, 44: 423–435, 2005 |
[2] | G. Amani, C. Nindjin, B. N'zue, Tschannen A and D. Aka,"Potentialités de la transformation du manioc (Manihot Esculenta Crantz) en Afrique de l’Ouest". Actes du 1er Atelier International, Abidjan, 4-7 juin, 48–79, 2007 |
[3] | A. Akintonwa, O. Tunwashe and A. Onifade, "Fatal and non-fatal acute poisoning attributed to cassava-based meal". Acta Horticulturae, 375: 285–288, 1994 |
[4] | F.N.A. Aryee, I. Oduro, W.O. Ellis and J.J. Afuakwa, "The physicochemical properties of four samples from the roots of 31 varieties of cassava". Food Control, 17: 916–922, 2006. |
[5] | C. Balagopalan, G. Padmaja, S.K. Nanda and S.N. Moorthy, "Cassava nutrition and toxicity. In: Balagopalan, C. (Ed.). Cassava in Food, Feed and Industry". CRC Press, Florida, USA, pp. 13–36, 1988 |
[6] | J.P. Baudoin, J.P. Barthélemy and V. Ndungo, "Cyanide production of the lima bean, Phaseolus lunatus L. Genetic variability in the primary and secondary gene pools and in some intraspecific hybrid , in Bulletin de Recherche Agronomique de Gembloux", XXVI, n° 3, pp. 367–388, 1991 |
[7] | J.H. Bradbury, "Processing of cassava to reduce cyanide content". Cassava Cyanide Disease Network News (CCDN), 3: 3-4, 2004 |
[8] | M. Bokanga, "CASSAVA: Post-harvest Operations, éd. International Institute of Tropical Agriculture (IITA)", Ibadan, Nigeria, 220 p, 2001 |
[9] | G.G. Bolhuis, "The toxicity of cassava roots". Journal of Agriculture and Science, 2:176-185, 1954 |
[10] | P. Bourdoux, P. Seghers and M. Mafuta, "Cassava Products: HCN content and detoxcification processes, In Delange F., Iteke F., Ermans A., ed. Nutritional factors involved in the goitrogenic action of Cassava", Ottawa, Int. Development Research Center, pp. 234-246, 1982 |
[11] | E.A. Burns, H.J. Bradbury, R.T. Cavagnora and M.R. Gleadow. "Total cyanide Content of cassava food product in Australia". Journal of food composition and analysis, 25: 79-82, 2012 |
[12] | A.P. Cardoso, M. Ernesto, J. Cliff, S.V. Egan and J.H. Bradbury, "Cyanogenic potential of cassava flour: field trial in Mozambique of a simple kit". International Journal of Food Sciences and Nutrition, 49: 93–99, 1998 |
[13] | A.P. Cardoso, E. Mirone, M. Ernesto, F. Massaza, J. Cliff, R.M. Haque and H.J Bradbury, "Processing of cassava roots to remove cyanogens". Journal of food composition and Analysis, 18: 451-460, 2005 |
[14] | J.J. Claustriaux and R. Palm, "« Chapitre 7 : Analyse de la variance », cours de maîtrise statistique des procédés", ULg – Gx ABT – SIMA, pp 142 – 163, 2011 |
[15] | R.D. Cooke, "An enzymatic assay for the total cyanide content of cassava (Manihot Esculenta Crantz)". Journal of the Science of Food and Agriculture, 29: 345–352. 1978 |
[16] | F. Delange, L.O. Ekpechi and H. Rosling, "Cassava cyanogenesis and iodine deficiency disorders". Acta Horticulturae, 375: 289–293, 1994 |
[17] | A. Diouf, "Rapport final du projet d’appui au programme spécial de la relance de la filière manioc au Sénégal", pp 5-6, 2006 |
[18] | M. Ernesto, A.P. Cardoso, D. Nicala, E. Mirione, F. Massaza, J. Cliff, M.R. Haque and J.H. Bradbury, "Persistent konzo and cyanide toxicity from cassava in Northern Mozambique". Acta Tropica, 82: 357–362, 2002 |
[19] | FAOSTAT. 2011. Food and Agriculture Organization of the United Nations statistics database retrieved 2 February, 2013 from: www.faostat.fao.org. |
[20] | FAO/WHO. "Joint FAO/WHO food standards programme, Codex Alimentarious Commission, XII Supplement 4 FAO". Rome, pp: 12-45. 1999 |
[21] | G. Gomez, M. Valdivieso, D. De La Cuesta and S.T. Salcedo, "Effect of variety and plant age on the cyanide content of whole-root cassava chips and its reduction by sun- drying". Animal Feed Science and Technology, 11: 57–65, 1984 |
[22] | G. Gourez, 1982. Le manioc, le cyanure et la nutrition animale. La toxicité du manioc et la thyroïde : Compte rendu d'un colloque tenu à Ottawa, Canada, du 31 mai au 2 juin 1982 |
[23] | T.M. Gueye, "Rapport: Le manioc, la meilleure alternative au riz pour les populations sénégalaises", Walfadjri, Contributions, 2008 |
[24] | T.M. Gueye, "Rapport : Journée portes ouvertes sur la transformation du manioc, Ministère des Mines, de l’Industrie et des PME de la République du Sénégal", Institut de Technologie Alimentaire, 2009. |
[25] | A. Hidayat, N. Zuraida, and I. Hanarida, "The cyanogenic potential of roots and leaves of ninety nine cassava cultivars". Indonesian journal of Agricultural Science, 3: 25-32, 2002 |
[26] | W.P. Howlett, "Konzo: a new human disease entity". Acta Horticulturae, 375: 323–329, 1994 |
[27] | J.Y. Jamin, B.L Seiny and C. Floret, 2003. Savanes africaines : des espaces en mutation, des acteurs face à de nouveaux défis, Actes du colloque, mai 2002, Garoua, Cameroun, Prasac, N’Djamena, Tchad - Cirad, Montpellier, France. |
[28] | B.L. Koffi, E.C. Djedji and A. Kamenan, "Dégradation de la teneur en acide cyanhydrique au cours de la transformation du manioc et qualité microbiologique de l’attiéké", Actes de l'Atelier "Potentialités à la transformation du manioc en Afrique de l'Ouest" - Abidjan, 4-7 Juin, 262 – 265, 2007 |
[29] | M. Kojima, N. Iwatsuki, E.S. Data, C.D.V. Villegas and I. Uritani, "Changes in cyanide content and linamarase activity in wounded cassava roots". Plant Physiol, 72: 186-189, 1983 |
[30] | V. Lebot, "Tropical root and tuber crops: cassava, sweet potato, yams and aroids". CABI, Wallingford, UK, 2009. |
[31] | J.M. McMahon, W.L.B. White and R.T. Sayre. "Cyanogenesis in cassava (Manihot esculenta Crantz)". Journal of Experimental Botany, 46: 731–741, 1995 |
[32] | J.A. Montagnac, C.R. Davis and S.A. Tanumihardjo, "Nutritional value of cassava for use as a staple food and recent advances for improvement". Comprehensive Reviews in Food Science and Food Safety, 8: 181–194, 2009 |
[33] | B. Nambisan, "Strategies for elimination of cyanogens from cassava for reducing toxicity and improving food safety", Food and Chemical Toxicology, 49: 690–693, 2011 |
[34] | B.O. Osuntokun, "Chronic cyanide intoxication of dietary origin and a degenerative neuropathy in Nigerians". Acta Horticulturae, 375: 311–321, 1994 |
[35] | C.I. Owuamanam, J.O. Iwouno, N.C. Ihediohanma and L.I. Barber, "Cyanide reduction, functional and sensory quality of gari as affected by pH, temperature and fermentation time Pakistan". Journal of nutrition, 9: 980-986, 2010 |
[36] | C.I. Owuamanam, C.C. Ogueke, S.C. Achinewhu and I.S. Barimalaa, "Quality characteristics of gari as affected by preferment liquor, temperature and duration of fermentation". American Journal of Food Technology, 6: 374-384, 2011 |
[37] | J.E. Richard, "Tannins levels in cassava, a comparison of methods of analysis". J. Sci. Food. Agric, 37: 37-42, 1985 |
[38] | H. Rosling, "Cassava toxicity and food security". Uppsala, Sweden, Tryclc Kontakt, 40 p. 1987 |
[39] | R. Rukiya, "Détermination quantitative du cyanure dans le manioc (variétés F100, 02864, 30085/28, 30344/6 Mpelolongi) ". Inédit. Mémoire. Faculté des sciences, Université de Kinshasa. 1988 |
APA Style
Séri Serge Guédé, Souleymane Traoré, Kouakou Brou. (2013). Assessment of Cyanide Content in Cassava (Manihot esculenta Crantz) Varieties and Derived Products from Senegal. International Journal of Nutrition and Food Sciences, 2(5), 225-231. https://doi.org/10.11648/j.ijnfs.20130205.12
ACS Style
Séri Serge Guédé; Souleymane Traoré; Kouakou Brou. Assessment of Cyanide Content in Cassava (Manihot esculenta Crantz) Varieties and Derived Products from Senegal. Int. J. Nutr. Food Sci. 2013, 2(5), 225-231. doi: 10.11648/j.ijnfs.20130205.12
AMA Style
Séri Serge Guédé, Souleymane Traoré, Kouakou Brou. Assessment of Cyanide Content in Cassava (Manihot esculenta Crantz) Varieties and Derived Products from Senegal. Int J Nutr Food Sci. 2013;2(5):225-231. doi: 10.11648/j.ijnfs.20130205.12
@article{10.11648/j.ijnfs.20130205.12, author = {Séri Serge Guédé and Souleymane Traoré and Kouakou Brou}, title = {Assessment of Cyanide Content in Cassava (Manihot esculenta Crantz) Varieties and Derived Products from Senegal}, journal = {International Journal of Nutrition and Food Sciences}, volume = {2}, number = {5}, pages = {225-231}, doi = {10.11648/j.ijnfs.20130205.12}, url = {https://doi.org/10.11648/j.ijnfs.20130205.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijnfs.20130205.12}, abstract = {We investigated cyanide levels in four cassava varieties and some derived products from Senegal. The study was conducted on fresh tubers by sampling in three longitudinal positions (1/4; 1/2; 3/4) and four radials (A, B, C and D). In addition, the sampling of derived products was carried out by product types (chip dried, graded, unpressed and pressed attieke, gari and flour). Cyanide contents were determined using differential pulse polarography. Results showed that whatever the variety considered, there was no significant difference between the total HCN content in cassava slices (1/4; 1/2; 3/4). Similarly, results from different layers (A, B, C and D) did not highlight the radial variability of the total HCN content. We showed a variable cyanide content (mg HCN/kg fresh material) in cassava varieties: 104.3 ± 3.9; 171.6 ± 5.4; 231.2 ± 10.2; 270.8 ± 12.0 for Kombo, Nigeria, Soya and Gniargui respectively. The detoxification processes (attieke, gari and flour) indicated a reduction rate in excess of 80% and may be effective to reduce the cyanide content in cassava root down to a tolerable level (< 50 mg/kg).}, year = {2013} }
TY - JOUR T1 - Assessment of Cyanide Content in Cassava (Manihot esculenta Crantz) Varieties and Derived Products from Senegal AU - Séri Serge Guédé AU - Souleymane Traoré AU - Kouakou Brou Y1 - 2013/08/30 PY - 2013 N1 - https://doi.org/10.11648/j.ijnfs.20130205.12 DO - 10.11648/j.ijnfs.20130205.12 T2 - International Journal of Nutrition and Food Sciences JF - International Journal of Nutrition and Food Sciences JO - International Journal of Nutrition and Food Sciences SP - 225 EP - 231 PB - Science Publishing Group SN - 2327-2716 UR - https://doi.org/10.11648/j.ijnfs.20130205.12 AB - We investigated cyanide levels in four cassava varieties and some derived products from Senegal. The study was conducted on fresh tubers by sampling in three longitudinal positions (1/4; 1/2; 3/4) and four radials (A, B, C and D). In addition, the sampling of derived products was carried out by product types (chip dried, graded, unpressed and pressed attieke, gari and flour). Cyanide contents were determined using differential pulse polarography. Results showed that whatever the variety considered, there was no significant difference between the total HCN content in cassava slices (1/4; 1/2; 3/4). Similarly, results from different layers (A, B, C and D) did not highlight the radial variability of the total HCN content. We showed a variable cyanide content (mg HCN/kg fresh material) in cassava varieties: 104.3 ± 3.9; 171.6 ± 5.4; 231.2 ± 10.2; 270.8 ± 12.0 for Kombo, Nigeria, Soya and Gniargui respectively. The detoxification processes (attieke, gari and flour) indicated a reduction rate in excess of 80% and may be effective to reduce the cyanide content in cassava root down to a tolerable level (< 50 mg/kg). VL - 2 IS - 5 ER -