The solutions of the Schrodinger equation with Kratzer plus Modified Deng-Fan potential have been obtained using the parametric Nikiforov-Uvarov (NU) method which is based on the solutions of general second-order linear differential equations with special functions. The bound state energy eigenvalues and the corresponding un-normalized eigen functions are obtained in terms of Jacobi polynomials. Also special cases of the potential have been considered and their energyeigen values obtained.
| Published in | International Journal of Applied Mathematics and Theoretical Physics (Volume 3, Issue 4) |
| DOI | 10.11648/j.ijamtp.20170304.14 |
| Page(s) | 97-100 |
| Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
| Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
Schrodinger, Kratzer, Deng-Fan, Eigen Energy
| [1] | Sameer M. Ikhdair (2011): Journal of Mathematical Physics 52, 052303 (2011); doi: http://dx.doi.org/10.1063/1.3583553 |
| [2] | Louis H., Ita B. I., Nelson N. A., I. Joseph., Amos P. I and Magu T. O…International Research Journal Of Pure and Applied Physics. Vol. 5, No. 3, pp 27-32, 2017. |
| [3] | Sameer M. Ikhdairand Ramazan(2008). 10.2478/s11534-008-0018-0. |
| [4] | Sameer M. Ikhdair and Ramazan Sever (2009): Int. J. Mod. Phys. C 20 (1) (2009). |
| [5] | Philip .M. Morse (1929): Phys. Rev. 34, 57 – Published 1 July 1929. |
| [6] | N. Rosen and Philip M. Morse (1932 Phys. Rev. 42, 210 – Published 15 October 1932. |
| [7] | B. I. Ita, H. Louis, T. O. Magu and N. A. Nzeata-Ibe (2017. WSN 74 (2017) 280-287. |
| [8] | H. Louis, B. I. Ita, T. O. Magu and N. A Nzeata-Ibe (2017. World scientific news, WSN 70(2) (2017) 312-319. |
| [9] | B. I. Ita, B. E. Nyong., H. Louis, T. O. Magu (2017): J. Chem. Soc. Nigeria, Vol. 41, No. 2, pp21-26 [2017]. |
| [10] | H. Louis*, B. I. Ita., B. E. Nyong., T. O. Magu, S. Barka and N. A. Nzeata-Ibe (2016): Journal of Nigerian Association of Mathematical Physics vol.36, No. 2, (July, 2016) pp.193-198. |
| [11] | B. I. Ita, B. E. Nyong, N. O. Alobi, H. Louis and T. O. Magu (2016):. Equatorial Journal of Computational and Theoretical Sciemces, Volume 1, Issue 1, (2016), pp. 55-64. |
| [12] | B. I. Ita, A. I. Ikeuba, H. Louis and P. Tchoua (2015. Journal of Theoretical Physics and Cryptography. IJTPC, Vol. 10, December, 2015.www.IJTPC.org |
| [13] | Z. H. Deng and Y. P. Fan, Shandong Univ. J. 7, 162 (1957). |
| [14] | S. H. Dong, Factorization Method in Quantum Mechanics (Fundamental Theoriesin Physics, 150, Springer, Netherlands, 2007). |
| [15] | L. H. Zhang, X. P. Li and C. S. Jia, Int. J. Quant. Chem. 111, 1870 (2010). |
| [16] | Louis H., Nzeata-Ibe N. A., Ita B. I., Joseph I., Isa P. A., Magu T. O: World Journal of Applied Physics, Vol. 2, N0. 5, 2017, pp. 77-84. doi: 10.11648/j.wjap.20170205.13 |
| [17] | Yan-Fu Cheng and Tong-Qing Dai (2007. Phys. Scr. 75 274. |
APA Style
Louis Hitler, Benedict Iserom Ita, Ozioma Udochuku Akakuru, Thomas Odey Magu, Innocent Joseph, et al. (2017). Radial Solution of the S-Wave Schrodinger Equation with Kratzer Plus Modified Deng-Fan Potential Under the Framework of Nikifarov-Uvarov Method. International Journal of Applied Mathematics and Theoretical Physics, 3(4), 97-100. https://doi.org/10.11648/j.ijamtp.20170304.14
ACS Style
Louis Hitler; Benedict Iserom Ita; Ozioma Udochuku Akakuru; Thomas Odey Magu; Innocent Joseph, et al. Radial Solution of the S-Wave Schrodinger Equation with Kratzer Plus Modified Deng-Fan Potential Under the Framework of Nikifarov-Uvarov Method. Int. J. Appl. Math. Theor. Phys. 2017, 3(4), 97-100. doi: 10.11648/j.ijamtp.20170304.14
AMA Style
Louis Hitler, Benedict Iserom Ita, Ozioma Udochuku Akakuru, Thomas Odey Magu, Innocent Joseph, et al. Radial Solution of the S-Wave Schrodinger Equation with Kratzer Plus Modified Deng-Fan Potential Under the Framework of Nikifarov-Uvarov Method. Int J Appl Math Theor Phys. 2017;3(4):97-100. doi: 10.11648/j.ijamtp.20170304.14
@article{10.11648/j.ijamtp.20170304.14,
author = {Louis Hitler and Benedict Iserom Ita and Ozioma Udochuku Akakuru and Thomas Odey Magu and Innocent Joseph and Pigweh Amos Isa},
title = {Radial Solution of the S-Wave Schrodinger Equation with Kratzer Plus Modified Deng-Fan Potential Under the Framework of Nikifarov-Uvarov Method},
journal = {International Journal of Applied Mathematics and Theoretical Physics},
volume = {3},
number = {4},
pages = {97-100},
doi = {10.11648/j.ijamtp.20170304.14},
url = {https://doi.org/10.11648/j.ijamtp.20170304.14},
eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijamtp.20170304.14},
abstract = {The solutions of the Schrodinger equation with Kratzer plus Modified Deng-Fan potential have been obtained using the parametric Nikiforov-Uvarov (NU) method which is based on the solutions of general second-order linear differential equations with special functions. The bound state energy eigenvalues and the corresponding un-normalized eigen functions are obtained in terms of Jacobi polynomials. Also special cases of the potential have been considered and their energyeigen values obtained.},
year = {2017}
}
TY - JOUR T1 - Radial Solution of the S-Wave Schrodinger Equation with Kratzer Plus Modified Deng-Fan Potential Under the Framework of Nikifarov-Uvarov Method AU - Louis Hitler AU - Benedict Iserom Ita AU - Ozioma Udochuku Akakuru AU - Thomas Odey Magu AU - Innocent Joseph AU - Pigweh Amos Isa Y1 - 2017/12/21 PY - 2017 N1 - https://doi.org/10.11648/j.ijamtp.20170304.14 DO - 10.11648/j.ijamtp.20170304.14 T2 - International Journal of Applied Mathematics and Theoretical Physics JF - International Journal of Applied Mathematics and Theoretical Physics JO - International Journal of Applied Mathematics and Theoretical Physics SP - 97 EP - 100 PB - Science Publishing Group SN - 2575-5927 UR - https://doi.org/10.11648/j.ijamtp.20170304.14 AB - The solutions of the Schrodinger equation with Kratzer plus Modified Deng-Fan potential have been obtained using the parametric Nikiforov-Uvarov (NU) method which is based on the solutions of general second-order linear differential equations with special functions. The bound state energy eigenvalues and the corresponding un-normalized eigen functions are obtained in terms of Jacobi polynomials. Also special cases of the potential have been considered and their energyeigen values obtained. VL - 3 IS - 4 ER -