Pyrano[2,3-c]pyrazole ligand and their transition metal complex with nickel (NiIIMPC) were synthesized and characterization by elemental analyses, magnetic susceptibility, FT IR, UV-Vis, and mass spectroscopy. Complex have been investigated as functional models for catechol oxidase activity by using a catechol as a model substrate. According to the kinetic measurement results, the rate of catechol oxidation follows first order kinetics. Nickel complex has been used in homogenous oxidation of catechol in presence of a green oxidant H2O2. kinetic parameters were obtained Vmax= 2.698×10-3MS-1, Km = 7.878M, kcat= 4.496×10-2S-1 and kcat/Km = 0.5707 M-1S-1.
| Published in | Biochemistry and Molecular Biology (Volume 3, Issue 1) |
| DOI | 10.11648/j.bmb.20180301.11 |
| Page(s) | 1-5 |
| Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
| Copyright |
Copyright © The Author(s), 2018. Published by Science Publishing Group |
Pyrano[2,3-c]Pyrazole, Nickel, Oxidation, Catecholase
| [1] | E. V. Akimova, D. H. Busch, P. K. Kahol, N. Pinto, N. W. Alcock, H. J. Clase, Inorg. Chem. 36 (1997) 510. |
| [2] | H. Okawa, H. Sakiyama, Pure Appl. Chem. 67 (1995) 273. |
| [3] | R. Cini, Inorg Chem. 22 (2000)151. |
| [4] | D. Kovala, J Inorg Biochem 79 (2000)153. |
| [5] | J. Haggin, Chem. Eng. News 71 (1993) 23. |
| [6] | N. Boussaleh, R. Touzani, I. Bouabdallah, S. Ghalem, S. El Kadiri, Int. J. Acad. Res. 2 (2009) 137. |
| [7] | A. Djedouani, F. Abrigach, M. Khoutoul, A. Mohamadou, A. Bendaas, A. Oussaid, R. Touzani, Orient. J. Chem. 31 (1) (2015) 97. |
| [8] | A. Mouadili, A. El Ouafi, A. Attayibat, S. Radi, R. Touzani, J. Mater. Environ. Sci. 6 (2015) 2166. |
| [9] | S. R. Mandha, S. Siliveri, M. Alla, V. R. Bommena, M. R. Bommineni, S. Balasubramanian, Bioorganic and Medicinal Chemistry Letters 22 (2012) 5272. |
| [10] | E. C. Witte, P. Neubert, A. Roesoh,. Chem. Abstr. 104 (1986) 224915f. |
| [11] | J. L. Wang, D. Liu, Z. J. Zheng, S. Shan, X. Han, S. M. Srinivasula, C. M. Croce, E. S. Alnemri, Z. Huang, Proc. Natl. Acad. Sci. U.S.A. 97 (2009) 7124. |
| [12] | M. E. A. Zaki, E. M. Morsy, M Abdul, Heterocycl. Commun. 10 (2004) 97. |
| [13] | (a) M. E. A. Zaki, H. A. Saliman, O. A. Hickal, A. E. Rashad, Natureforsch, C: Biosci. 61 (2006)1. (b) C. K. Sheng, J. H. Li, N. J. Hideo, Med. Chem. 27 (1984) 539. |
| [14] | SK. Mal, M. Mitra, H. Yadav, CS. Purohit, AR. Choudhury, R. Ghosh, Polyhedron. 111 (2016) 118. |
| [15] | N. Beyazit, D. Çakmak, C. Demetgül, Tetrahedron 73 (2017) 2774. |
| [16] | KC. Gupta, AK. Sutar, Coord Chem Rev. 252 (2008) 1420. |
| [17] | M. Mitra, AK. Maji, BK. Ghosh, et al. Polyhedron. 61 (2013) 15. |
| [18] | AK. Ghosh, M. Mitra, A. Fathima, et al. Polyhedron. 107 (2016) 1. |
| [19] | S. Anbu, A. Paul, APC. Ribeiro, Inorg Chim Acta. 450 (2016) 426. |
| [20] | T. Megyes, Z. May, G. Schubert, T. Grosz, LI. Simandi, T. Radnai, Inorg Chim Acta. 359 (2006) 2329. |
| [21] | L. Michaelis, M. L. Menten, Biochem. Z 49 (1913) 333. |
| [22] | S. R. Mandha, S. Siliveri, M. Alla, V. R. Bommena, M. R. Bommineni, S. Balasubramanian, Bioorganic and Medicinal Chemistry Letters 22 (2012) 5272. |
| [23] | J. F Zhou, S. J. Tu, Y. Gao, M. Ji, J. Org. Chem. 21 (2001) 742. |
| [24] | S. R. Mandha, S. Siliveri, M. Alla, V. R. Bommena, M. R. Bommineni, S. Balasubramanian, Bioorganic and Medicinal Chemistry Letters 22 (2012) 5272. |
| [25] | Z. Bouanane, M Bounekhel, M. Elkolli, F. A. brigach, M. Khoutoul, R. Bouyala, R. Touzani, A. Hellal, Journal of Molecular Structure 1139 (2017) 238. |
| [26] | S. J. Zhuang, Q. X. Wang, J. Chem. Res. (2004)821. |
| [27] | J. R. Ferraro, Plenum, New York (1971). |
| [28] | A. A. El-Asmy, Y. M. Shaibi, I. M. Shedaiwa, M. A. Khattab, Inorg. Met. Org. Chem. 18 (1988)331. |
| [29] | A. B. P. Lever, “Inorganic Electronic Spectroscopy”, Elsevier, Amsterdam, (1986). |
| [30] | A. A. El-Asmy, M. Mounir, Transition Met. Chem. 13 (1988)143. |
APA Style
Mohamed M. Al-Sayed. (2018). New Nickel Metal Complex towards Biomimetic Catecholase Enzyme Oxidation: Synthesis and Kinetics Studies. Biochemistry and Molecular Biology, 3(1), 1-5. https://doi.org/10.11648/j.bmb.20180301.11
ACS Style
Mohamed M. Al-Sayed. New Nickel Metal Complex towards Biomimetic Catecholase Enzyme Oxidation: Synthesis and Kinetics Studies. Biochem. Mol. Biol. 2018, 3(1), 1-5. doi: 10.11648/j.bmb.20180301.11
AMA Style
Mohamed M. Al-Sayed. New Nickel Metal Complex towards Biomimetic Catecholase Enzyme Oxidation: Synthesis and Kinetics Studies. Biochem Mol Biol. 2018;3(1):1-5. doi: 10.11648/j.bmb.20180301.11
@article{10.11648/j.bmb.20180301.11,
author = {Mohamed M. Al-Sayed},
title = {New Nickel Metal Complex towards Biomimetic Catecholase Enzyme Oxidation: Synthesis and Kinetics Studies},
journal = {Biochemistry and Molecular Biology},
volume = {3},
number = {1},
pages = {1-5},
doi = {10.11648/j.bmb.20180301.11},
url = {https://doi.org/10.11648/j.bmb.20180301.11},
eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.bmb.20180301.11},
abstract = {Pyrano[2,3-c]pyrazole ligand and their transition metal complex with nickel (NiIIMPC) were synthesized and characterization by elemental analyses, magnetic susceptibility, FT IR, UV-Vis, and mass spectroscopy. Complex have been investigated as functional models for catechol oxidase activity by using a catechol as a model substrate. According to the kinetic measurement results, the rate of catechol oxidation follows first order kinetics. Nickel complex has been used in homogenous oxidation of catechol in presence of a green oxidant H2O2. kinetic parameters were obtained Vmax= 2.698×10-3MS-1, Km = 7.878M, kcat= 4.496×10-2S-1 and kcat/Km = 0.5707 M-1S-1.},
year = {2018}
}
TY - JOUR T1 - New Nickel Metal Complex towards Biomimetic Catecholase Enzyme Oxidation: Synthesis and Kinetics Studies AU - Mohamed M. Al-Sayed Y1 - 2018/01/12 PY - 2018 N1 - https://doi.org/10.11648/j.bmb.20180301.11 DO - 10.11648/j.bmb.20180301.11 T2 - Biochemistry and Molecular Biology JF - Biochemistry and Molecular Biology JO - Biochemistry and Molecular Biology SP - 1 EP - 5 PB - Science Publishing Group SN - 2575-5048 UR - https://doi.org/10.11648/j.bmb.20180301.11 AB - Pyrano[2,3-c]pyrazole ligand and their transition metal complex with nickel (NiIIMPC) were synthesized and characterization by elemental analyses, magnetic susceptibility, FT IR, UV-Vis, and mass spectroscopy. Complex have been investigated as functional models for catechol oxidase activity by using a catechol as a model substrate. According to the kinetic measurement results, the rate of catechol oxidation follows first order kinetics. Nickel complex has been used in homogenous oxidation of catechol in presence of a green oxidant H2O2. kinetic parameters were obtained Vmax= 2.698×10-3MS-1, Km = 7.878M, kcat= 4.496×10-2S-1 and kcat/Km = 0.5707 M-1S-1. VL - 3 IS - 1 ER -