This paper studies the influence of atomic number at temperature of 300 K, temperature at 5324 atoms, phase transition & crystallization at different temperatures of 300 K, 500 K, 600 K, 700 K, 1100 K after 2×105 move steps number by increasing temperature of 4×1012 K/s on microstructure, phase transition temperature, phase transition & crystallization of CuNi nanoparticle by molecular dynamics (MD) with embedded interaction Sutton-Chen and soft boundary conditions. Microstructure characteristics are analyzed through radial distribution function (RDF), energy, size, phase transition temperature (via relationship between energy and temperature), phase transition & crystallization (via radial distribution function, Etot, move step number and common neighbor analysis (CNA)). Results show that first peak position of the radial distribution function is dominant; lengths of Cu-Cu, Ni-Ni with the results of Ni-Ni consistent with simulation. At 300 K temperature, nanoparticle appears in four phases namely FCC, HCP, ICO and Amorphous, presenting the effect of atomic number, temperature and move step number on microstructure, phase transition temperature and phase transition & crystallization of CuNi nanoparticle.
| Published in | American Journal of Modern Physics (Volume 6, Issue 4) |
| DOI | 10.11648/j.ajmp.20170604.14 |
| Page(s) | 66-75 |
| Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
| Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
Atomic Number, Temperature, Move Step Number, Microstructure, Transition Temperature, Crystallization, CuNi Nanoparticle, Molecular Dynamics
| [1] | R. D. S. Lisboa, C. S. Kiminami, J. Non-Cryst. Solids. 304, (2002), 36. |
| [2] | Z. X. Wang, R. J. Wang, W. H. Wang, Mater. Lett. 60, (2005), 831. |
| [3] | Duwez, P. E., Willens, R. H., Klement, W., Continuous series of metastable solid solutions in silver-copper alloys, J. Appl. Phys., 31, (1960), 1136-1137. |
| [4] | Takayama, S., Glass formation and stability, J. Mater. Sci., 11: (1976), 164-185. |
| [5] | Q. X. Pei, C. Lu, H. P. Lee, J. Phys. Condens. Matter 17, (2005), 1493. |
| [6] | L. Hui, B. Xiufang, Z. Jingxiang, Mater. Sci. Eng. A 271, (1999), 116. |
| [7] | H. R. Cong, X. F. Bian, J. X. Zhang, H. Li, Mater. Sci. Eng. A 326, (2002), 343. |
| [8] | L. Qi, H. F. Zhang, Z. Q. Hu, P. K. Liaw, Phys. Lett. A 327, (2004), 506. |
| [9] | M. Yan, J. F. Sun, J. Shen, J. Alloys Comp. 381, (2004), 86. |
| [10] | M. Shimono, H. Onodera, Mater. Sci. Eng. 515, (2001), A 304–306. |
| [11] | J. S. C. Jang, L. J. Chang, G. J. Chen, J. C. Huang, Intermetallics 13, (2005), 907. |
| [12] | Y. L. Gao, J. Shen, J.F. Sun, G. Wang, D.W. Xing, H.Z. Xian, B.D. Zhou, Mater. Lett. 57 (2003) 1894. |
| [13] | D. Caprion, H. R. Schober, J. Non-Cryst. Solids 369, (2003), 326–327. |
| [14] | L. A. Marqués, L. Pelaz, M. Aboy, P. Lopez, J. Barbolla, Comput. Mater. Sci. 33, (2005), 92. |
| [15] | Y. Shao, P. C. Clapp, J. A. Rifkin,Metall. Mater. Trans. A 27A, (1996), 1477. |
| [16] | S. Erkoc, Phys. Rep. 278, (1997), 79. |
| [17] | M. W. Finnis, J. E. Sinclair, Philos. Mag. A 50, (1984) 45. |
| [18] | A. F. Voter, S. P. Chen, in: R. W. Siegel, J. R. Weertman, R. Sinclair (Eds.), Mat. Res. Soc. Symp. Proc., vol. 82, MRS, Pittsburgh, (1987), 175–180. |
| [19] | A. P. Sutton, J. Chen, Philos. Mag. Lett. 61, (1990), 139. |
| [20] | J. H. Shim, S. C. Lee, B. J. Lee, J. Y. Suh, Y. W. Cho, J. Cryst. Growth 250, (2003), 558. |
| [21] | C. Kuiying, S. Xianwei, Z. Xiumu, L. Yiyi, Mater. Sci. Eng. A 214, (1996), 39. |
| [22] | T. M. Brown, J. B. Adams, J. Non-Cryst. Solids 180, (1995), 275. |
| [23] | Y Qi, T Çağin, Y Kimura, WA Goddard, Journal of computer-aided materials design 8 (2), (2001), 233-243. |
| [24] | Saida, J., Matsushita, M., Direct observation of icosahedral cluster in Zr70Pd30 binary glassy alloy, Appl. Phys. Lett., 79: (2001), 412-414. |
| [25] | Zetterling, F. H. M., Dzugutov, M., Formation of large-scale icosahedral clusters in a simple liquid approach- ing the glass transition, J. Non-crystalline solids, 293-295: (2001), 39-44. |
| [26] | Harrop, J. D., Taraskin, S. N., Simdyankin, S. I. et al., Numerical structural analysis of the icosahedral glass and related structures, J. Non-crystalline Solids, (2001), 293-295: 556-561. |
| [27] | A. P. Sutton and J. Chen, Philos. Mag. Lett. 61, (1990), 139. |
| [28] | H. Rafii-Tabar and A. P. Sutton, Philos. Mag. Lett. 63, (1991), 217. |
| [29] | Y Qi, T Çağın, Y Kimura, WA Goddard III, Physical review B 59 (5), (1999), 3527. |
| [30] | Sutton, A. P., Chen, J., Long-range Finnis-Sinclair potentials, Philos, Mag. Lett., 61, (1990), 139-146. |
| [31] | Doye, J. P. K., Wales, D. J., Global minima for transition metal clusters described by Sutton-Chen potentials, New J. Chem., 22, (1998), 733-744. |
| [32] | H. Tsuzuki, P. S. Branicio, J. P. Rino, Computer physics communications 177 (6), (2007), 518-523. |
| [33] | S. Kazanc, "Molecular dynamics study of pressure effect on crystallization behaviour of amorphous CuNi alloy during isothermal annealing", Physics Letters A 365, (2007) 473–477. |
| [34] | P. R. Subramanian, D. J. Chakrabarti, D. E. Laughlin, Phase Diagrams of Binary Alloys, ASM International, Materials Park, OH, (1994). |
| [35] | Qi, Y., Cagin, T., Kimura, Y. et al., Physical review B, 59: (1993), 527-3533. |
| [36] | T. Cagın, G. Dereli, M. Uludogan, and M. Tomak, Physical review B 5, 59 (1999-I), 3468-3473. |
| [37] | E. L. de León-Quiroz, D. Vázquez Obregón et al., Ieee Transactions On Magnetics, 49: (2013), 4522-4524 |
| [38] | Ramazan Oguzhan Apaydin, Burcak Ebin and Sebahattin Gurmen, Metallurgical and Materials Transactions A, 47A, (2016), 3744-3752, doi: 10.1007/s11661-016-3514-7. |
APA Style
Trong Dung Nguyen. (2017). Some Factors Affecting Structure, Transition Phase and Crystallized of CuNi Nanoparticles. American Journal of Modern Physics, 6(4), 66-75. https://doi.org/10.11648/j.ajmp.20170604.14
ACS Style
Trong Dung Nguyen. Some Factors Affecting Structure, Transition Phase and Crystallized of CuNi Nanoparticles. Am. J. Mod. Phys. 2017, 6(4), 66-75. doi: 10.11648/j.ajmp.20170604.14
AMA Style
Trong Dung Nguyen. Some Factors Affecting Structure, Transition Phase and Crystallized of CuNi Nanoparticles. Am J Mod Phys. 2017;6(4):66-75. doi: 10.11648/j.ajmp.20170604.14
@article{10.11648/j.ajmp.20170604.14,
author = {Trong Dung Nguyen},
title = {Some Factors Affecting Structure, Transition Phase and Crystallized of CuNi Nanoparticles},
journal = {American Journal of Modern Physics},
volume = {6},
number = {4},
pages = {66-75},
doi = {10.11648/j.ajmp.20170604.14},
url = {https://doi.org/10.11648/j.ajmp.20170604.14},
eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmp.20170604.14},
abstract = {This paper studies the influence of atomic number at temperature of 300 K, temperature at 5324 atoms, phase transition & crystallization at different temperatures of 300 K, 500 K, 600 K, 700 K, 1100 K after 2×105 move steps number by increasing temperature of 4×1012 K/s on microstructure, phase transition temperature, phase transition & crystallization of CuNi nanoparticle by molecular dynamics (MD) with embedded interaction Sutton-Chen and soft boundary conditions. Microstructure characteristics are analyzed through radial distribution function (RDF), energy, size, phase transition temperature (via relationship between energy and temperature), phase transition & crystallization (via radial distribution function, Etot, move step number and common neighbor analysis (CNA)). Results show that first peak position of the radial distribution function is dominant; lengths of Cu-Cu, Ni-Ni with the results of Ni-Ni consistent with simulation. At 300 K temperature, nanoparticle appears in four phases namely FCC, HCP, ICO and Amorphous, presenting the effect of atomic number, temperature and move step number on microstructure, phase transition temperature and phase transition & crystallization of CuNi nanoparticle.},
year = {2017}
}
TY - JOUR T1 - Some Factors Affecting Structure, Transition Phase and Crystallized of CuNi Nanoparticles AU - Trong Dung Nguyen Y1 - 2017/07/17 PY - 2017 N1 - https://doi.org/10.11648/j.ajmp.20170604.14 DO - 10.11648/j.ajmp.20170604.14 T2 - American Journal of Modern Physics JF - American Journal of Modern Physics JO - American Journal of Modern Physics SP - 66 EP - 75 PB - Science Publishing Group SN - 2326-8891 UR - https://doi.org/10.11648/j.ajmp.20170604.14 AB - This paper studies the influence of atomic number at temperature of 300 K, temperature at 5324 atoms, phase transition & crystallization at different temperatures of 300 K, 500 K, 600 K, 700 K, 1100 K after 2×105 move steps number by increasing temperature of 4×1012 K/s on microstructure, phase transition temperature, phase transition & crystallization of CuNi nanoparticle by molecular dynamics (MD) with embedded interaction Sutton-Chen and soft boundary conditions. Microstructure characteristics are analyzed through radial distribution function (RDF), energy, size, phase transition temperature (via relationship between energy and temperature), phase transition & crystallization (via radial distribution function, Etot, move step number and common neighbor analysis (CNA)). Results show that first peak position of the radial distribution function is dominant; lengths of Cu-Cu, Ni-Ni with the results of Ni-Ni consistent with simulation. At 300 K temperature, nanoparticle appears in four phases namely FCC, HCP, ICO and Amorphous, presenting the effect of atomic number, temperature and move step number on microstructure, phase transition temperature and phase transition & crystallization of CuNi nanoparticle. VL - 6 IS - 4 ER -