Using the Adomian decomposition method (ADM), we present in this paper a numerical approximation of the solution of the nonlinear KDV equation. The principal task concerns essentially the computation of the Adomian polynomials for this type of equation and thereafter determining a significant criterion to ensure the conditions for convergence of the method.
Published in | American Journal of Modern Physics (Volume 2, Issue 3) |
DOI | 10.11648/j.ajmp.20130203.13 |
Page(s) | 111-115 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2013. Published by Science Publishing Group |
KDV Equation, Numerical Approach, Adomian Decomposition
[1] | K. Abbaoui and Y. Cherruault, Convergence of adomian’s method applied to differential equations, Comp Math Appl (1994). |
[2] | K. Abbaoui and Y. Cherruault, Convergence of Adomian’s method applied to nonlinear equations, Math Computer Model (1994). |
[3] | N. Himoun, K. Abbaoui, and Y. Cherruault, New results of convergence of Adomian’s method, Kybernetes (1999). |
[4] | Y. Zhu, Q. Chang, and S. Wu, A new algorithm for calculating Adomian polynomials, Appl. Math. Comput. (2005). |
[5] | M. Inc, On numerical solution of partial differential equation by the decomposition method, Kragujevac J Math (2004). |
APA Style
M. Akdi, M. B. Sedra. (2013). Numerical KDV Equation by the Adomian Decomposition Method. American Journal of Modern Physics, 2(3), 111-115. https://doi.org/10.11648/j.ajmp.20130203.13
ACS Style
M. Akdi; M. B. Sedra. Numerical KDV Equation by the Adomian Decomposition Method. Am. J. Mod. Phys. 2013, 2(3), 111-115. doi: 10.11648/j.ajmp.20130203.13
AMA Style
M. Akdi, M. B. Sedra. Numerical KDV Equation by the Adomian Decomposition Method. Am J Mod Phys. 2013;2(3):111-115. doi: 10.11648/j.ajmp.20130203.13
@article{10.11648/j.ajmp.20130203.13, author = {M. Akdi and M. B. Sedra}, title = {Numerical KDV Equation by the Adomian Decomposition Method}, journal = {American Journal of Modern Physics}, volume = {2}, number = {3}, pages = {111-115}, doi = {10.11648/j.ajmp.20130203.13}, url = {https://doi.org/10.11648/j.ajmp.20130203.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmp.20130203.13}, abstract = {Using the Adomian decomposition method (ADM), we present in this paper a numerical approximation of the solution of the nonlinear KDV equation. The principal task concerns essentially the computation of the Adomian polynomials for this type of equation and thereafter determining a significant criterion to ensure the conditions for convergence of the method.}, year = {2013} }
TY - JOUR T1 - Numerical KDV Equation by the Adomian Decomposition Method AU - M. Akdi AU - M. B. Sedra Y1 - 2013/05/02 PY - 2013 N1 - https://doi.org/10.11648/j.ajmp.20130203.13 DO - 10.11648/j.ajmp.20130203.13 T2 - American Journal of Modern Physics JF - American Journal of Modern Physics JO - American Journal of Modern Physics SP - 111 EP - 115 PB - Science Publishing Group SN - 2326-8891 UR - https://doi.org/10.11648/j.ajmp.20130203.13 AB - Using the Adomian decomposition method (ADM), we present in this paper a numerical approximation of the solution of the nonlinear KDV equation. The principal task concerns essentially the computation of the Adomian polynomials for this type of equation and thereafter determining a significant criterion to ensure the conditions for convergence of the method. VL - 2 IS - 3 ER -