he definitions of all symmetry operations, their permutation counterparts and matrix representations, the multiplication table, all classes, abelian subgroups, and some other subgroups of point group Oh are clearly obtained. For every symmetry operation (or element) of Oh, appropriate figures are pictured for the sake of clarity.
Published in | American Journal of Modern Physics (Volume 2, Issue 2) |
DOI | 10.11648/j.ajmp.20130202.19 |
Page(s) | 81-87 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2013. Published by Science Publishing Group |
Point Groups, Solid State Physics, Symmetry
[1] | H. F. Jones, "Group, Representations and Physics", London: IOP Publishing, 1998. |
[2] | L. Mariot, "Group Theory and Solid State Physics", London: Prentice-Hall International Inc, 1962. |
[3] | W. Ledermann, "Introduction to Group Theory", London: Longman, 1973. |
[4] | U. Shmueli, "Theories and Techniques of Crystal Structure Determination", Oxford: Oxford University Press, 2007. |
[5] | P. Ramond, "Group Theory A Physicist’s Survey", Cambridge: Cambridge University Press, 2010. |
[6] | A. O. Barut and R. Raczka, "Theory of Group Representations and Applications", Warszawa: Polish Scientific Publishers, 1980. |
[7] | Z. –Q. Ma and X. –Y. Gu, "Problems and solutions in Group Theory for Physicists", Singapore: World Scientific Publishing, 2004. |
[8] | J. Q. Chen, J. Ping and F. Wang, "Group Representation Theory for Physicists", Singapore: World Scientific Publishing, 2002. |
[9] | M. S. Dresselhaus, G. Dresselhaus and A. Jorio, "Group Theory Application to the Physics of Condensed Matter", Berlin-Heidelberg: Springer-Verlag, 2008. |
[10] | M. A. Armstrong, "Groups and Symmetry", Berlin-Heidelberg: Springer-Verlag, 1988. |
[11] | M. Hamermesh, "Group Theory and Its Applications to Physical Problems", New York: Dover, 1989. |
[12] | F. D. Murnaghan, "The Theory of Group Representations", Baltimore: The Johns Hopkins Press, 1938. |
[13] | M. A. Naimark and A. I. Stern, "Theory of Group Representations", New York: Springer-Verlag, 1982. |
[14] | G. F. Koster, "Space Groups and Their Representations" New York and London: Academic Press, 1957. |
[15] | N. W. Ashcroft and N. D. Mermin, "Solid State Physics" New York: Saunders College Publishing, 1976. |
APA Style
Ayse Delibas, Vildan Aykan, Deniz Turkkan, Harun Akkus. (2013). Point groups in solid state physics I: Point group Oh. American Journal of Modern Physics, 2(2), 81-87. https://doi.org/10.11648/j.ajmp.20130202.19
ACS Style
Ayse Delibas; Vildan Aykan; Deniz Turkkan; Harun Akkus. Point groups in solid state physics I: Point group Oh. Am. J. Mod. Phys. 2013, 2(2), 81-87. doi: 10.11648/j.ajmp.20130202.19
AMA Style
Ayse Delibas, Vildan Aykan, Deniz Turkkan, Harun Akkus. Point groups in solid state physics I: Point group Oh. Am J Mod Phys. 2013;2(2):81-87. doi: 10.11648/j.ajmp.20130202.19
@article{10.11648/j.ajmp.20130202.19, author = {Ayse Delibas and Vildan Aykan and Deniz Turkkan and Harun Akkus}, title = {Point groups in solid state physics I: Point group Oh}, journal = {American Journal of Modern Physics}, volume = {2}, number = {2}, pages = {81-87}, doi = {10.11648/j.ajmp.20130202.19}, url = {https://doi.org/10.11648/j.ajmp.20130202.19}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmp.20130202.19}, abstract = {he definitions of all symmetry operations, their permutation counterparts and matrix representations, the multiplication table, all classes, abelian subgroups, and some other subgroups of point group Oh are clearly obtained. For every symmetry operation (or element) of Oh, appropriate figures are pictured for the sake of clarity.}, year = {2013} }
TY - JOUR T1 - Point groups in solid state physics I: Point group Oh AU - Ayse Delibas AU - Vildan Aykan AU - Deniz Turkkan AU - Harun Akkus Y1 - 2013/03/10 PY - 2013 N1 - https://doi.org/10.11648/j.ajmp.20130202.19 DO - 10.11648/j.ajmp.20130202.19 T2 - American Journal of Modern Physics JF - American Journal of Modern Physics JO - American Journal of Modern Physics SP - 81 EP - 87 PB - Science Publishing Group SN - 2326-8891 UR - https://doi.org/10.11648/j.ajmp.20130202.19 AB - he definitions of all symmetry operations, their permutation counterparts and matrix representations, the multiplication table, all classes, abelian subgroups, and some other subgroups of point group Oh are clearly obtained. For every symmetry operation (or element) of Oh, appropriate figures are pictured for the sake of clarity. VL - 2 IS - 2 ER -