The use of ferritic-martensitic steels, for example, Fe-Cr and Fe-Cr-Al alloys as structural material for fast neutron reactors has been advocated due to their relatively low rate of swelling at elevated temperatures. Because of the high Cr-content, the Fe-Cr alloys are not suitable for use at temperatures around 500°С due to the miscibility gap in the Fe-Cr system. Phase separation in such alloys can also be prevented by doping with elements that impede the segregation of chromium. In solid state physics for calculating phase separation in similar metal systems are used physicochemical and phase-field modeling. The aim of the work is the physicochemical modeling of diffusion phase transformation and determination of the long-term microstructural stability of the Fe-21.4 Cr-1.16 Mo. A conventional Fe-21.4 Cr alloy is used as a reference material. The article proposes an integral approach to modeling phase separation in chromium alloys, combining the determination of diffusion coefficients and fluxes of elements, taking into account their dependences on the concentration and an assessment of the mutual diffusion of elements, using the provisions of nonequilibrium thermodynamics. The calculated values of diffusion fluxes are used to calculate the current concentrations of carbon and chromium in the alloy and the size of chromium formations. They show that the thermal stability of the Fe - 21.4% Cr alloy with 1.16% Mo is much higher than without molybdenum. In alloy Fe – 21,4% Cr – 1,16% Mo at a temperature of 973°K, the chromium concentration during the same operation time decreases three times slower with the formation of inclusions of the σ-phase about 6 microns in size.
Published in | American Journal of Mechanical and Materials Engineering (Volume 5, Issue 2) |
DOI | 10.11648/j.ajmme.20210502.11 |
Page(s) | 23-28 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2021. Published by Science Publishing Group |
Physicochemical Modeling, Phase Transformation, Fluxes, Chromium Alloys, Nonequilibrium, Thermodynamics, Diffusion Coefficients
[1] | E. A. Little, D. A. Stow, J. Nucl. Mater. 87 (1979) 25. |
[2] | D. S. Gelles, J. Nucl. Mater. 108&109 (1982) 515. |
[3] | F. A. Garner, M. B. Toloczko, B. H. Sencer, J. Nucl. Mater. 276 (2000) 123. |
[4] | G. Muller, G. Schumacher, F. Zimmerman, J. Nucl. Mater., 278 (2000) 85-95. |
[5] | M. Kondo, M. Takahashi, J. Nucl. Mater., 356 (2006) 203-212. |
[6] | S. Takaya, T. Furukawa, K. Aoto, G. Muller, A. Weisenburger, A. Heinzel, M. Inoue, T. Okuda, F. Abe, S. Ohnuki, T. Fujisawa, A. Kimura, J. Nucl. Mater., 386 (2009) 507-510. |
[7] | J. Lim, H. O. Nam, I. S. Hwang, J. H. Kim, J. Nucl. Mater., 407 (2010) 205-210. |
[8] | M. Del Giacco, A. Weisenburger, A. Jianu, F. Lang, G. Mueller, J. Nucl. Mater., 421 (2012) 39-46. |
[9] | T. Cheng, J. R. Keiser, M. P. Brady, K. A. Terrani, B. A. Pint, J. Nucl. Mater., 427 (2012) 396-400. |
[10] | B. A. Pint, K. A. Terrani, M. P. Brady, T. Cheng, J. R. Keiser, J. Nucl. Mater., 440 (2013) 420-427. |
[11] | A. Weisenburger, A. Jianu, S. Doyle, M. Bruns, R. Fetzer, A. Heinzel, M. DelGiacco, W. An, G. Muller, J. Nucl. Mater., 437 (2013) 282-292. |
[12] | J. Ejenstam, M. Halvarsson, J. Weidow, B. Jönsson, P. Szakalos, J. Nucl. Mater., 443 (2013) 161-170. |
[13] | B. Jonsson, R. Berglund, J. Magnusson, P. Henning, M. Hattestrand, High Temperature Corrosion and Protection of Materials 6, Prt 1 and 2, Proceedings, 461-464 (2004) 455-462. |
[14] | R. O. Williams, H. W. Paxton, J Iron Steel Inst, 185 (1957) 358-374. |
[15] | R. Lagneborg, Acta Metall Mater, 15 (1967) 1737-1745. |
[16] | W. S. Spear, D. H. Polonis, Metall Mater Trans A, 25 (1994) 1135-1146. |
[17] | J. H. Lange, M. Brede, B. Fischer, S. Spindler, H. Wagner, R. Wittmann, D. Gerthsen, A. Broska, J. Wolff, MRS Online Proceedings Library, 539 (1998). |
[18] | C. Capdevila, M. K. Miller, K. F. Russell, J. Chao, J. L. Gonzalez-Carrasco, Mat Sci Eng a-Struct, 490 (2008) 277-288. |
[19] | C. Capdevila, M. K. Miller, K. F. Russell, J Mater Sci, 43 (2008) 3889-3893. |
[20] | S. Kobayashi, T. Takasugi, Scripta Mater, 63 (2010) 1104-1107. |
[21] | J. Ejenstam, M. Thuvander, P. Olsson, F. Rave, P. Szakalos. Microstructural stability of Fe-Cr-Al alloys at 450-500C. Journal of Nuclear Materials, 457 (2015) 291–297. |
[22] | J. Wallenius, P. Olsson, C. Lagerstedt, N. Sandberg, R. Chakarova, V. Pontikis. Modeling of chromium precipitation in Fe-Cr alloys, Phys. Rev. B 69 (9), 094103 (2004). |
[23] | P. Olsson, J. Wallenius, Ch. Domain, K. Nordlund, L. Malerba. Two-bond modeling of α-prime phase formation in Fe-Cr. Phys. Rev., 72, 214119 (2005). |
[24] | S. Herzman and B. Sundman, “A thermodynamic analysis of the Fe-Cr system,” Calphad, vol. 6, pp. 67–80, 1982. |
[25] | N. Lecoq, H. Zapolsky, & P. Galenko, Evolution of the structure factor in spinodal decomposition. Eur. Phys. J. Spec. Top. 177, 165 (2009). |
[26] | J Boisse, N Lecoq, R Patte, H Zapolsky. Phase-field simulation of coarsening of γ precipitates in an ordered γ′ matrix. Acta Materialia 55 (18), 6151-6158. |
[27] | L. N. Larikov, V. I. Isajchev, Diffuziya v metallakh i splavakh. Spravochnik. (Kiev: Naukova dumka: 1987). |
[28] | O. A. Bannykh, P. B. Budberg, S. P. Alisova et al. State diagrams of binary and multicomponent systems based on iron. (Moskva: Metallurgiya, 1986). |
[29] | B. S. Bokshtejn, Diffuziya v metallakh (Moskva: Metallurgiya: 1978). |
[30] | S. V. Bobyr. Using the Principles of Nonequilibrium Thermodynamics for the Analysis of Phase Transformations in Iron-Carbon Alloys // chapter in book "Non-Equilibrium Particle Dynamics" – London Intechopen, May 2019, P. 95-140. |
[31] | L. I. Lysak, B. I. Nikolin Physical foundations of heat treatment of steel - Kiev: Technique, 1975-304p. |
[32] | V. N. Svechnikov, G. F. Kobzenko, “Chromium – molybdenum state diagram”, Dokl. USSR Academy of Sciences, 155: 3 (1964), P. 611–614. |
APA Style
Serhii V. Bobyr, Dmitro V. Loshkarev. (2021). Physico-chemical Modeling of Phase Separation in Fe-21.4 Cr Steel with 1.14 Mo Using the Provisions of Non-equilibrium Thermodynamics. American Journal of Mechanical and Materials Engineering, 5(2), 23-28. https://doi.org/10.11648/j.ajmme.20210502.11
ACS Style
Serhii V. Bobyr; Dmitro V. Loshkarev. Physico-chemical Modeling of Phase Separation in Fe-21.4 Cr Steel with 1.14 Mo Using the Provisions of Non-equilibrium Thermodynamics. Am. J. Mech. Mater. Eng. 2021, 5(2), 23-28. doi: 10.11648/j.ajmme.20210502.11
AMA Style
Serhii V. Bobyr, Dmitro V. Loshkarev. Physico-chemical Modeling of Phase Separation in Fe-21.4 Cr Steel with 1.14 Mo Using the Provisions of Non-equilibrium Thermodynamics. Am J Mech Mater Eng. 2021;5(2):23-28. doi: 10.11648/j.ajmme.20210502.11
@article{10.11648/j.ajmme.20210502.11, author = {Serhii V. Bobyr and Dmitro V. Loshkarev}, title = {Physico-chemical Modeling of Phase Separation in Fe-21.4 Cr Steel with 1.14 Mo Using the Provisions of Non-equilibrium Thermodynamics}, journal = {American Journal of Mechanical and Materials Engineering}, volume = {5}, number = {2}, pages = {23-28}, doi = {10.11648/j.ajmme.20210502.11}, url = {https://doi.org/10.11648/j.ajmme.20210502.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmme.20210502.11}, abstract = {The use of ferritic-martensitic steels, for example, Fe-Cr and Fe-Cr-Al alloys as structural material for fast neutron reactors has been advocated due to their relatively low rate of swelling at elevated temperatures. Because of the high Cr-content, the Fe-Cr alloys are not suitable for use at temperatures around 500°С due to the miscibility gap in the Fe-Cr system. Phase separation in such alloys can also be prevented by doping with elements that impede the segregation of chromium. In solid state physics for calculating phase separation in similar metal systems are used physicochemical and phase-field modeling. The aim of the work is the physicochemical modeling of diffusion phase transformation and determination of the long-term microstructural stability of the Fe-21.4 Cr-1.16 Mo. A conventional Fe-21.4 Cr alloy is used as a reference material. The article proposes an integral approach to modeling phase separation in chromium alloys, combining the determination of diffusion coefficients and fluxes of elements, taking into account their dependences on the concentration and an assessment of the mutual diffusion of elements, using the provisions of nonequilibrium thermodynamics. The calculated values of diffusion fluxes are used to calculate the current concentrations of carbon and chromium in the alloy and the size of chromium formations. They show that the thermal stability of the Fe - 21.4% Cr alloy with 1.16% Mo is much higher than without molybdenum. In alloy Fe – 21,4% Cr – 1,16% Mo at a temperature of 973°K, the chromium concentration during the same operation time decreases three times slower with the formation of inclusions of the σ-phase about 6 microns in size.}, year = {2021} }
TY - JOUR T1 - Physico-chemical Modeling of Phase Separation in Fe-21.4 Cr Steel with 1.14 Mo Using the Provisions of Non-equilibrium Thermodynamics AU - Serhii V. Bobyr AU - Dmitro V. Loshkarev Y1 - 2021/06/21 PY - 2021 N1 - https://doi.org/10.11648/j.ajmme.20210502.11 DO - 10.11648/j.ajmme.20210502.11 T2 - American Journal of Mechanical and Materials Engineering JF - American Journal of Mechanical and Materials Engineering JO - American Journal of Mechanical and Materials Engineering SP - 23 EP - 28 PB - Science Publishing Group SN - 2639-9652 UR - https://doi.org/10.11648/j.ajmme.20210502.11 AB - The use of ferritic-martensitic steels, for example, Fe-Cr and Fe-Cr-Al alloys as structural material for fast neutron reactors has been advocated due to their relatively low rate of swelling at elevated temperatures. Because of the high Cr-content, the Fe-Cr alloys are not suitable for use at temperatures around 500°С due to the miscibility gap in the Fe-Cr system. Phase separation in such alloys can also be prevented by doping with elements that impede the segregation of chromium. In solid state physics for calculating phase separation in similar metal systems are used physicochemical and phase-field modeling. The aim of the work is the physicochemical modeling of diffusion phase transformation and determination of the long-term microstructural stability of the Fe-21.4 Cr-1.16 Mo. A conventional Fe-21.4 Cr alloy is used as a reference material. The article proposes an integral approach to modeling phase separation in chromium alloys, combining the determination of diffusion coefficients and fluxes of elements, taking into account their dependences on the concentration and an assessment of the mutual diffusion of elements, using the provisions of nonequilibrium thermodynamics. The calculated values of diffusion fluxes are used to calculate the current concentrations of carbon and chromium in the alloy and the size of chromium formations. They show that the thermal stability of the Fe - 21.4% Cr alloy with 1.16% Mo is much higher than without molybdenum. In alloy Fe – 21,4% Cr – 1,16% Mo at a temperature of 973°K, the chromium concentration during the same operation time decreases three times slower with the formation of inclusions of the σ-phase about 6 microns in size. VL - 5 IS - 2 ER -