The Fixed Point Theorem had been proved on Reciprocally Continuous Self Mapping. In this paper the fixed point theorem on reciprocally continuous self mapping is proved under Menger Space.
| Published in | American Journal of Applied Mathematics (Volume 3, Issue 1) |
| DOI | 10.11648/j.ajam.20150301.12 |
| Page(s) | 4-7 |
| Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
| Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Fixed Point, Reciprocally Continuous, Compatible Maps, Self Maps, Complete Menger Space
| [1] | A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64(1994), 395-399. MR1289545. ZBI 0843.54014 |
| [2] | A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems, 90(1997), 365-368. MR1477836. Zbl 0917.54010. |
| [3] | B. Schweizer and A. Sklar, Probabilistic Metric Spaces, Elsevier, North-Hooland, 1983. MRO790314. Zbl0546.60010. |
| [4] | B. Singh and S. Jain, A fixed point theorem in Menger space through weak compatibility, J. Match. Anal. Appl., 301 (2005), 439-448. MR2105684 Zbl 1068, 54044. |
| [5] | Chang,-Shi-sen, Huan,-Nan-Jing, On the generalized 2-metric spaces and probabilistic 2-metric spaces with application to fixed point theory, Math. Japon. 34 1989, 885-900. |
| [6] | D. Mihet, Inegalitata triunghiului si puncte fixed in PM-spatii, Doctoral Thesis West of Timisora, in Engilish, (2001). |
| [7] | D. Mihet, Multi-valued generalizations of probabilistic contractions, J. Math. Anal. Appl., 304(2005), 464-472. MR2126543 Zbl 1072-47066. |
| [8] | D. Mihet, On a theorem of O. Hadzic, Univ. u Novom Sadu, Zb. Rad. Prirod. Mat. Fak. Ser. Mat. |
| [9] | D. Mihet, On fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets and Systems, 158(2007), 915-921. MR2302646. Zbl 117.54008. |
| [10] | E. Pap, O. Hadzic and R. Mesiar, A fixed point theorem in probabilistic metric space and an application, J. Math. Anal. Appl. 202 (1996), 433-449. |
| [11] | Gahler, S., 2-metrische Raume und ihre topologische Strucktur, Math. Nachr., 26 1963/1964. 115-148. |
| [12] | Hadzic, O., On Coincidence Point Theorem for Multivalued Mappings in Probabilistic Metric Spaces, Univ. u Novom Sadu, Zb. Rad. Prirod. Mat. Fak., Ser. Mat. 25, 1 1995, 1-7. |
| [13] | Hadzic, O., On Common Fixed Point Theorems in 2-metric spaces, Univ. u Novom Sadu, Zb. Rad. Prirod-Mat. Fak., Ser. Mat. 12, 1982, 7-18. |
| [14] | Hadzic, O., On the (E, A.) - topology of probabilistic locally convex spaces, Glax. Mat., Vol. 13(33), 293-297. |
| [15] | Hicks, T.L., Fixed Point Theory in Probabilistic Metric Spaces, Univ. u Novom Saud, Zb. Rad. Prirod. - Mat. Fak., Ser. Mat. 13, 1 1983, 63-72. |
| [16] | K.Menger, Statistical metric, Proc Nat Acad Sci, USA, 28 (1942), 535-7. |
| [17] | Kaleva, O., Saikala, S., On fuzzy metric spaces, Fuzzy Sets and Systems, 12 (1984), 215-229. |
| [18] | O. Hadzic and E. Pap, Fixed point theory in PM spaces, Dordrecht: Kluwer Academic Publishers, 2001. |
| [19] | O. Hadzic and E. Pap, A fixed point theorem for multi-valued mapping in probabilistic Metric space and an application in fuzzy metric spaces, Fuzzy Sets Syst, 127 (2002), 333-344. |
| [20] | O. Hadzic and E. Pap, A fixed point theorem for multivalued mappings in Probabilistic metric spaces and an application in fuzzy metric spaces, Fuzzy Sets and Systems, 127(2002), 333-344. MR1899066, Zbl 102.54025. |
| [21] | O. Hadzic and E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Academic Publishers, 2001. MR1896451. Zbl0994.47077. |
| [22] | O. Hadzic, E. Pap, Fixed point theorem for multi-valued probabilistic ^-contractions, Indian J. Pure Appl. Math, 25(8) (1994), 825-835. |
| [23] | R. Vasuki and P. Veeramani, Fixed point theorems and Cauchy sequences in fuzzy metric spaces, Fuzzy Sets and Systems, 135 (2003), 415-417. MR 1979610 Zbl 1029.54012. |
| [24] | Radu. V, A family of deterministic metrics on Menger spaces, Sem. Teor. Prob. Apl. Univ. Timisoara, 78 (1985). |
| [25] | Singh, - Shyma-Lal, Talwar, - Rekha, Zeng, - Wen-Zhi, Common fixed point theorems in 2-Menger spaces and applications, Math-students 63 1994, no 1-4, 74-80. |
| [26] | Stojakovic, M., Ovcin, Z., Fixed Point Theorems and variational principle in fuzzy metric space, Fuzzy Sets and Systems 66 (1994) 353-356. |
| [27] | T.L. Hicks, Fixed point theory in probabilistic metric spaces, Zb. Rad. Prirod. Mat. Fak. Ser. Mat, 13 (1983), 63-72. |
| [28] | Tatjana Zikic-Dosenovic, A multi-valvued Generalization of Hick's Co-contraction, Fuzzy Sets and Systems, 151(2005), 549-592. MR2126173 Zbl 1069.54025. |
| [29] | V.M. Sehgal and A.T. Bharucha-Reid, Fixed point of contraction mappings on PM space, Math Sys. Theory, 6(2) (1972), 97-100. MR0310858. Abl 0244.60004. |
| [30] | Zeng, - Wen -Zhi, Probabilistic 2-metric spaces, J. Math. Research Expo. 2 1987, 241-245. |
| [31] | Zikic-Dosenovic. T., A multi-valued generalization of Hick's C-contraction., Fuzzy sets Syst, 151 2005, 549-562. |
APA Style
Neha Jain, Rajesh Shrivastava, K. Qureshi. (2015). A Fixed Point Theorem on Reciprocally Continuous Self Mapping under Menger Space. American Journal of Applied Mathematics, 3(1), 4-7. https://doi.org/10.11648/j.ajam.20150301.12
ACS Style
Neha Jain; Rajesh Shrivastava; K. Qureshi. A Fixed Point Theorem on Reciprocally Continuous Self Mapping under Menger Space. Am. J. Appl. Math. 2015, 3(1), 4-7. doi: 10.11648/j.ajam.20150301.12
AMA Style
Neha Jain, Rajesh Shrivastava, K. Qureshi. A Fixed Point Theorem on Reciprocally Continuous Self Mapping under Menger Space. Am J Appl Math. 2015;3(1):4-7. doi: 10.11648/j.ajam.20150301.12
@article{10.11648/j.ajam.20150301.12,
author = {Neha Jain and Rajesh Shrivastava and K. Qureshi},
title = {A Fixed Point Theorem on Reciprocally Continuous Self Mapping under Menger Space},
journal = {American Journal of Applied Mathematics},
volume = {3},
number = {1},
pages = {4-7},
doi = {10.11648/j.ajam.20150301.12},
url = {https://doi.org/10.11648/j.ajam.20150301.12},
eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajam.20150301.12},
abstract = {The Fixed Point Theorem had been proved on Reciprocally Continuous Self Mapping. In this paper the fixed point theorem on reciprocally continuous self mapping is proved under Menger Space.},
year = {2015}
}
TY - JOUR T1 - A Fixed Point Theorem on Reciprocally Continuous Self Mapping under Menger Space AU - Neha Jain AU - Rajesh Shrivastava AU - K. Qureshi Y1 - 2015/01/15 PY - 2015 N1 - https://doi.org/10.11648/j.ajam.20150301.12 DO - 10.11648/j.ajam.20150301.12 T2 - American Journal of Applied Mathematics JF - American Journal of Applied Mathematics JO - American Journal of Applied Mathematics SP - 4 EP - 7 PB - Science Publishing Group SN - 2330-006X UR - https://doi.org/10.11648/j.ajam.20150301.12 AB - The Fixed Point Theorem had been proved on Reciprocally Continuous Self Mapping. In this paper the fixed point theorem on reciprocally continuous self mapping is proved under Menger Space. VL - 3 IS - 1 ER -