| Peer-Reviewed

Numerical Solution of Linear Volterra Integro-Differential Equation using Runge-Kutta-Fehlberg Method

Received: 18 August 2013     Published: 20 February 2014
Views:       Downloads:
Abstract

In this paper a new fourth and fifth-order numerical solution of linear Volterra integro-differential equation is discussed. One popular technique that uses here for error control is called the Runge-Kutta-Fehlberg method for Ordinary Differential Equation (ODE) part and Newton-Cotes formulae for integral parts.

Published in Applied and Computational Mathematics (Volume 3, Issue 1)
DOI 10.11648/j.acm.20140301.12
Page(s) 9-14
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2014. Published by Science Publishing Group

Keywords

A fourth and Fifth-Order Accuracy, Lagrange Polynomial Interpolating, Newton-Cotes Formulas, Runge-Kutta Methods, Linear Volterra Integro-Differential Equation

References
[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs and Mathematical Tables, New York: Dover, 1972, pp. 885–887.
[2] A. Asanov, Uniqueness of the solution of systems of convolution-type Volterra integral equations of the first kind, In: Inverse problems for differential equations of the mathematical physics (Russian), Novasibirsk: Akad. Nauk SSSR Sibirsk. Otdel. Vychil. Tsentr, 1978, Vol 155, pp. 2–34.
[3] R. L. Burden and J. D. Faires, Numerical Analysis, New York: Brooks/Cole Publishing Company, USA, 1997, ch.5.
[4] C. T. H. Baker, The Numerical Treatment of Integral Equations, Clarendon Press; Oxford University Press, 1977.
[5] C. T. H. Baker, G. A. Bochorov, A. Filiz, N. J. Ford, C. A. H. Paul, F. A. Rihan, A. Tang, R. M. Thomas, H. Tian, D. R. Wille "Numerical Modelling by Retarded Functional Differential Equations," Numerical Analysis Report, Manchester Center for Computational Mathematics, No:335, ISS 130-1725,1998.
[6] C. T. H. Baker, G. A. Bochorov, A. Filiz, N. J. Ford, C. A. H. Paul, F. A. Rihan, A. Tang, R. M. Thomas, H. Tian, D. R. Wille "Numerical Modelling by Delay and Volterra Functional Differential Equations," Numerical Analysis Report, In: Computer Mathematics and its Aplications-Advances & Developments (1994-2005), Elias A. Lipitakis (Editor), LEA Publishers, Athens, Greece, 2006, pp. 233-256.
[7] R. Bellman, A Survey of the Theory of the Boundedness Stability and Asymptotic Behaviour of Solutions of Linear and Non-linear differential and difference equations, Washington, D. C., 1949.
[8] K. L. Cooke, "Functional differential equations close to cifferential equation," Amer. Math. Soc., 1966, Vol.72, pp. 285-288.
[9] A. Filiz, "On the solution of Volterra and Lotka-Volterra Type Equations," LMS supported One Day Meeting in Delayed Differential equation (Liverpool, UK), 12th March 2000.
[10] A. Filiz, "Numerical Solution of Some Volterra Integral Equations," PhD Thesis, The University of Manchester, 2000.
[11] A. Filiz, "Fourth-order robust numerical method for integro-differential equations," Asian Journal of Fuzzy and Applied Mathematics, 2013, Vol. 1 I, pp. 28-33.
[12] P. Linz, Analytical and Numerical Methods for Volterra Equations, SIAM, Philadelphia, 1985.
[13] C. W. Ueberhuber, Numerical Computation 2: Methods, Software and analysis, Berlin: Springer-Verlag, 1997.
[14] V. Volterra, Leçons Sur la Theorie Mathematique de la Lutte Pour La Vie, Gauthier-villars, Paris, 1931.
[15] V. Volterra, Theory of Functional and of Integro-Differential Equations. Dover, New York, 1959.
[16] V. Volterra, "Sulle Equazioni Integro-differenziali Della Teoria Dell’elastica," Atti Della Reale Accademia dei Lincei 18 (1909), Reprinted in Vito Volterra, Opera Mathematiche; Memorie e Note, Vol. 3, Accademia dei Lincei Rome, 1957.
[17] Wolfram MathWorld, Newton-Cotes Formulas, http://mathworld.wolfram.com/Newton-CotesFormulas.html
Cite This Article
  • APA Style

    Ali Filiz. (2014). Numerical Solution of Linear Volterra Integro-Differential Equation using Runge-Kutta-Fehlberg Method. Applied and Computational Mathematics, 3(1), 9-14. https://doi.org/10.11648/j.acm.20140301.12

    Copy | Download

    ACS Style

    Ali Filiz. Numerical Solution of Linear Volterra Integro-Differential Equation using Runge-Kutta-Fehlberg Method. Appl. Comput. Math. 2014, 3(1), 9-14. doi: 10.11648/j.acm.20140301.12

    Copy | Download

    AMA Style

    Ali Filiz. Numerical Solution of Linear Volterra Integro-Differential Equation using Runge-Kutta-Fehlberg Method. Appl Comput Math. 2014;3(1):9-14. doi: 10.11648/j.acm.20140301.12

    Copy | Download

  • @article{10.11648/j.acm.20140301.12,
      author = {Ali Filiz},
      title = {Numerical Solution of Linear Volterra Integro-Differential Equation using Runge-Kutta-Fehlberg Method},
      journal = {Applied and Computational Mathematics},
      volume = {3},
      number = {1},
      pages = {9-14},
      doi = {10.11648/j.acm.20140301.12},
      url = {https://doi.org/10.11648/j.acm.20140301.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.acm.20140301.12},
      abstract = {In this paper a new fourth and fifth-order numerical solution of linear Volterra integro-differential equation is discussed. One popular technique that uses here for error control is called the Runge-Kutta-Fehlberg method for Ordinary Differential Equation (ODE) part and Newton-Cotes formulae for integral parts.},
     year = {2014}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Numerical Solution of Linear Volterra Integro-Differential Equation using Runge-Kutta-Fehlberg Method
    AU  - Ali Filiz
    Y1  - 2014/02/20
    PY  - 2014
    N1  - https://doi.org/10.11648/j.acm.20140301.12
    DO  - 10.11648/j.acm.20140301.12
    T2  - Applied and Computational Mathematics
    JF  - Applied and Computational Mathematics
    JO  - Applied and Computational Mathematics
    SP  - 9
    EP  - 14
    PB  - Science Publishing Group
    SN  - 2328-5613
    UR  - https://doi.org/10.11648/j.acm.20140301.12
    AB  - In this paper a new fourth and fifth-order numerical solution of linear Volterra integro-differential equation is discussed. One popular technique that uses here for error control is called the Runge-Kutta-Fehlberg method for Ordinary Differential Equation (ODE) part and Newton-Cotes formulae for integral parts.
    VL  - 3
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Department of Mathematics, Adnan Menderes University, 09010 AYDIN-TURKEY

  • Sections