| Peer-Reviewed

Screening of Secondary Metabolites in Artemisia annua as Potential Inhibitors of Coronavirus Proteases by in silico Approaches

Received: 29 September 2021     Accepted: 25 October 2021     Published: 5 November 2021
Views:       Downloads:
Abstract

To date, no specific drug has been proven to treat COVID-19. It encourages people to use medicinal plants to treat or protect themselves against these diseases. Artemisia annua is one of the promising plants that have already been used in coronary disease. However, the antiviral compounds present in this plant remain poorly known. In this study, we aimed to identify some of these molecules by in silico approach. During the screening, 102 secondary metabolites of Artemisia annua were selected and the two viral proteins 3CLpro and PLpro of SARS-CoV2 were selected as targets. Then, a preliminary analysis was performed to determine the inhibition capacity of these phytoligands for the two viral proteins. Then, the phytoligands with stronger interaction energy with these target proteins were selected and their physicochemical properties and ADMET profile were analyzed. Consequently, 13 molecules of Artemisia annua, namely Apigenin, Axillarin, Crysoeriol, 8-Hydroxygalangin, Isorhamnetin, Kaempferol, Luteolin, Luteolin-7-methyleter, Quercetagetin-3-4-dimethyleter, Quercetagetin-3-4-dimethyleter, Quercetin-3-methyleter, Quercetin, Rhamnetin, and Tamarixetin can inhibit the two proteases of SARS CoV2. They also have a good physicochemical profile and an ADMET property in the human. These molecules may be compounds promoting an antiviral treatment in Artemisia annua. To complete these results, in vitro tests are necessary.

Published in Advances in Bioscience and Bioengineering (Volume 9, Issue 4)
DOI 10.11648/j.abb.20210904.12
Page(s) 96-110
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2021. Published by Science Publishing Group

Keywords

SARS-Cov2, 3CLpro, PLpro, Artemisia Annua, Secondary Metabolites, Docking, ADMET

References
[1] Drosten, C., S. Günther, W. Preiser, S. van der Werf, H.-R. Brodt, S. Becker, H. Rabenau, M. Panning, L. Kolesnikova, R. A. M. Fouchier, A. Berger, A.-M. Burguière, J. Cinatl, M. Eickmann, N. Escriou, K. Grywna, S. Kramme, J.-C. Manuguerra, S. Müller, V. Rickerts, M. Stürmer, S. Vieth, H.-D. Klenk, A. D. M. E. Osterhaus, H. Schmitz, and H. W. Doerr, Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome. New England Journal of Medicine, 2003. 348 (20): p. 1967-1976.
[2] Lee, P. -I. and P. -R. Hsueh, Emerging threats from zoonotic coronaviruses-from SARS and MERS to 2019-nCoV. Journal of Microbiology, Immunology and Infection, 2020. 53.
[3] Cheng, V. C. C., S. K. P. Lau, P. C. Y. Woo, and K. Y. Yuen, Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clinical microbiology reviews, 2007. 20 (4): p. 660-694.
[4] Hayman, B. and S. Pagliusi, Emerging vaccine manufacturers are innovating for the next decade. Vaccine: X, 2020. 5: p. 100066.
[5] Richardson, P., I. Griffin, C. Tucker, D. Smith, O. Oechsle, A. Phelan, and J. Stebbing, Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. The Lancet, 2020. 395 (10223): p. e30-e31.
[6] Wang, M., R. Cao, L. Zhang, X. Yang, J. Liu, M. Xu, Z. Shi, Z. Hu, W. Zhong, and G. Xiao, Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 2020. 30 (3): p. 269-271.
[7] Zhang, L., J. Liu, R. Cao, M. Xu, Y. Wu, W. Shang, X. Wang, H. Zhang, X. Jiang, Y. Sun, H. Hu, Y. Li, G. Zou, M. Zhang, L. Zhao, W. Li, X. Guo, X. Zhuang, X.-L. Yang, Z.-L. Shi, F. Deng, Z. Hu, G. Xiao, M. Wang, and W. Zhong, Comparative Antiviral Efficacy of Viral Protease Inhibitors against the Novel SARS-CoV-2 In Vitro. Virologica Sinica, 2020.
[8] Srivastava, A. K., A. Kumar, and N. Misra, On the Inhibition of COVID-19 Protease by Indian Herbal Plants: An In Silico Investigation. 2020.
[9] Tabish, S. A., COVID-19 pandemic: Emerging perspectives and future trends. Journal of public health research, 2020. 9 (1): p. 1786-1786.
[10] Adem, S., V. Eyupoglu, I. Sarfraz, A. Rasul, and M. Ali, Identification of Potent COVID-19 Main Protease (Mpro) Inhibitors from Natural Polyphenols: An in Silico Strategy Unveils a Hope against CORONA. Preprints 2020, 2020030333 (doi: 10.20944/preprints202003.0333.v1). 2020.
[11] Maurice, N., L'herboristerie d'antan à la phytothérapie moléculaire du XXIe siècle, ed. P. Ed. Lavoisier. 1997.
[12] Bhakuni, R., D. Jain, R. Sharma, and S. Kumar, Secondary metabolites of Artemisia Artemisia annua and their biological activity. Cur. Sci, 2000. 80.
[13] Turi, C., P. Shipley, and S. Murch, North American Artemisia species from the subgenus Tridentatae (Sagebrush): A phytochemical, botanical and pharmacological review. Phytochemistry, 2013. 98.
[14] Abid Ali Khan, M. M., D. C. Jain, R. S. Bhakuni, M. Zaim, and R. S. Thakur, Occurrence of some antiviral sterols in Artemisia annua. Plant Science, 1991. 75 (2): p. 161-165.
[15] Lubbe, A., I. Seibert, T. Klimkait, and F. van der Kooy, Ethnopharmacology in overdrive: the remarkable anti-HIV activity of Artemisia annua. Journal of ethnopharmacology 2012. 141, (854-859.).
[16] Mehrangiz Khajeh, K., E. Seyed Ahmad, G. Masoud Sabouri, S. Esmaeel Alizadeh, and S. Amirhossein, Antiviral activities of aerial subsets of Artemisia species against Herpes Simplex virus type 1 (HSV1) in vitro. Asian Biomedicine, 2011. 5 (1): p. 63-68.
[17] Romero, M. R., M. A. Serrano, M. Vallejo, T. Efferth, M. Alvarez, and J. J. Marin, Antiviral effect of artemisinin from Artemisia annua against a model member of the Flaviviridae family, the bovine viral diarrhoea virus (BVDV). Planta Med, 2006. 72 (13): p. 1169-74.
[18] Romero, M. R., T. Efferth, M. A. Serrano, B. Castaño, R. I. R. Macias, O. Briz, and J. J. G. Marin, Effect of artemisinin/artesunate as inhibitors of hepatitis B virus production in an “in vitro” replicative system. Antiviral Research, 2005. 68 (2): p. 75-83.
[19] Ergin, U., SARS CoV2 Genetic Information. 2020: p. 3.
[20] Maminiaina O. F. and Razafindrafara M. S., History of Epizootics, Epidemics and Evolution of Coronaviruses. International Journal of Infectious Diseases and Therapy, 2021. 4 (6): p. 132-145.
[21] Zumla, A., D. S. Hui, and S. Perlman, Middle East respiratory syndrome. Lancet, 2015. 386 (9997): p. 995-1007.
[22] Pillaiyar, T., M. Manickam, V. Namasivayam, Y. Hayashi, and S.-H. Jung, An Overview of Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3CL Protease Inhibitors: Peptidomimetics and Small Molecule Chemotherapy. Journal of Medicinal Chemistry, 2016. 59.
[23] Pišlar, A., A. Mitrović, J. Sabotič, U. Pečar Fonović, M. Perišić Nanut, T. Jakoš, E. Senjor, and J. Kos, The role of cysteine peptidases in coronavirus cell entry and replication: The therapeutic potential of cathepsin inhibitors. PLOS Pathogens, 2020. 16 (11): p. e1009013.
[24] Su, H., S. Yao, W. Zhao, M. Li, J. Liu, W. Shang, H. Xie, C. Ke, M. Gao, K. Yu, H. Liu, J. Shen, W. Tang, L. Zhang, J. Zuo, H. Jiang, F. Bai, Y. Wu, Y. Ye, and Y. Xu, Discovery of baicalin and baicalein as novel, natural product inhibitors of SARS-CoV-2 3CL protease in vitro. 2020, bioRxiv.
[25] Hsu, M.-F., C.-J. Kuo, K.-T. Chang, H.-C. Chang, C.-C. Chou, T. Ko, H.-L. Shr, G.-G. Chang, A. Wang, and p.-h. Liang, Mechanism of the maturation process of SARS-CoV 3CL protease. The Journal of biological chemistry, 2005. 280: p. 31257-66.
[26] Baez-Santos, Y., S. St. John, and A. Mesecar, The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds. Antiviral research, 2014. 115.
[27] Bhakuni, R. S., D. C. Jain, R. P. Sharma, and S. Kumar, Secondary metabolites of Artemisia annua and their biological activity. Current Science, 2001. 80 (1): p. 35-48.
[28] Ferreira, J. F., D. L. Luthria, T. Sasaki, and A. Heyerick, Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer. Molecules, 2010. 15 (5): p. 3135-70.
[29] Chu, C. M., I. F. N. Cheng Vc Fau - Hung, M. M. L. Hung If Fau - Wong, K. H. Wong Mm Fau - Chan, K. S. Chan Kh Fau - Chan, R. Y. T. Chan Ks Fau - Kao, L. L. M. Kao Ry Fau - Poon, C. L. P. Poon Ll Fau - Wong, Y. Wong Cl Fau - Guan, J. S. M. Guan Y Fau - Peiris, K. Y. Peiris Js Fau - Yuen, and K. Y. Yuen, Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. 2004 (0040-6376 (Print)).
[30] Costanzo, M., M. A. R. De Giglio, and G. N. Roviello, SARS-CoV-2: Recent Reports on Antiviral Therapies Based on Lopinavir/Ritonavir, Darunavir/Umifenovir, Hydroxychloroquine, Remdesivir, Favipiravir and other Drugs for the Treatment of the New Coronavirus. Curr Med Chem, 2020. 27 (27): p. 4536-4541.
[31] Yuan, S., K. Fan, Z. Chen, Y. Sun, H. Hou, and L. Zhu, Structure of the HRV-C 3C-Rupintrivir Complex Provides New Insights for Inhibitor Design. Virologica Sinica, 2020.
[32] Blumenthal, G. M., J. J. Gills, M. S. Ballas, W. B. Bernstein, T. Komiya, R. Dechowdhury, B. Morrow, H. Root, G. Chun, C. Helsabeck, S. M. Steinberg, J. LoPiccolo, S. Kawabata, E. R. Gardner, W. D. Figg, and P. A. Dennis, A phase I trial of the HIV protease inhibitor nelfinavir in adults with solid tumors. Oncotarget, 2014. 5 (18): p. 8161-8172.
[33] Ma, C., M. D. Sacco, B. Hurst, J. A. Townsend, Y. Hu, T. Szeto, X. Zhang, B. Tarbet, M. T. Marty, Y. Chen, and J. Wang, Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Research, 2020. 30 (8): p. 678-692.
[34] Flexner, C., HIV drug development: the next 25 years. Nature Reviews Drug Discovery, 2007. 6 (12): p. 959-966.
[35] Kuo, C. J., J. J. Shie, J. M. Fang, G. R. Yen, J. T. Hsu, H. G. Liu, S. N. Tseng, S. C. Chang, C. Y. Lee, S. R. Shih, and P. H. Liang, Design, synthesis, and evaluation of 3C protease inhibitors as anti-enterovirus 71 agents. Bioorg Med Chem, 2008. 16 (15): p. 7388-98.
[36] Njoroge, F. G., K. X. Chen, N. Y. Shih, and J. J. Piwinski, Challenges in modern drug discovery: a case study of boceprevir, an HCV protease inhibitor for the treatment of hepatitis C virus infection. Acc Chem Res, 2008. 41 (1): p. 50-9.
[37] Kim, S., P. A. Thiessen, E. E. Bolton, J. Chen, G. Fu, A. Gindulyte, L. Han, J. He, S. He, B. A. Shoemaker, J. Wang, B. Yu, J. Zhang, and S. H. Bryant, PubChem Substance and Compound databases. Nucleic acids research, 2016. 44 (D1): p. D1202-D1213.
[38] Jin, Z., X. Du, and Y. Xu, Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors. 2020. 582 (7811): p. 289-293.
[39] Rut, W., Z. Lv, M. Zmudzinski, S. Patchett, D. Nayak, S. J. Snipas, F. El Oualid, T. T. Huang, M. Bekes, M. Drag, and S. K. Olsen, Activity profiling and structures of inhibitor-bound SARS-CoV-2-PLpro protease provides a framework for anti-COVID-19 drug design. bioRxiv, 2020.
[40] Rizvi, S. M. D., S. Shakil, and M. Haneef, A simple click by click protocol to perform docking: AutoDock 4.2 made easy for non-bioinformaticians. EXCLI journal, 2013. 12: p. 831-857.
[41] Wu, Q., Z. Peng, Y. Zhang, and J. Yang, COACH-D: improved protein-ligand binding sites prediction with refined ligand-binding poses through molecular docking. Nucleic acids research, 2018. 46 (W1): p. W438-W442.
[42] Trott, O. and A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 2010. 31 (2): p. 455-461.
[43] Dallakyan, S. and A. J. Olson, Small-molecule library screening by docking with PyRx. Methods Mol Biol, 2015. 1263: p. 243-50.
[44] O'Boyle, N. M., M. Banck, C. A. James, C. Morley, T. Vandermeersch, and G. R. Hutchison, Open Babel: An open chemical toolbox. Journal of cheminformatics, 2011. 3: p. 33-33.
[45] Halgren, T. A., Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry, 1996. 17 (5-6): p. 490-519.
[46] Verma, S., R. Dixit, and K. C. Pandey, Cysteine Proteases: Modes of Activation and Future Prospects as Pharmacological Targets. Frontiers in pharmacology, 2016. 7: p. 107-107.
[47] P., D. E. V., T. L. Blundell, and D. B. Ascher, pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. Journal of medicinal chemistry, 2015. 58 (9): p. 4066-4072.
[48] Weininger, D., SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. Journal of Chemical Information and Computer Sciences, 1988. 28 (1): p. 31-36.
[49] Lipinski, C., Lipinski, C. A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today Technol. 1, 337-341. Drug Discovery Today: Technologies, 2004. 1: p. 337-341.
[50] Veber, D. F., S. R. Johnson, H. -Y. Cheng, B. R. Smith, K. W. Ward, and K. D. Kopple, Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. Journal of Medicinal Chemistry, 2002. 45 (12): p. 2615-2623.
[51] Muegge, I., Selection criteria for drug-like compounds. Medicinal Research Reviews, 2003. 23 (3): p. 302-321.
[52] Daina, A., O. Michielin, and V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports, 2017. 7: p. 42717-42717.
[53] Xu, C., F. Cheng, L. Chen, Z. Du, W. Li, G. Liu, P. W. Lee, and Y. Tang, In silico Prediction of Chemical Ames Mutagenicity. Journal of Chemical Information and Modeling, 2012. 52 (11): p. 2840-2847.
[54] Vorrink, S. U., Y. Zhou, M. Ingelman-Sundberg, and V. M. Lauschke, Prediction of Drug-Induced Hepatotoxicity Using Long-Term Stable Primary Hepatic 3D Spheroid Cultures in Chemically Defined Conditions. Toxicological sciences: an official journal of the Society of Toxicology, 2018. 163 (2): p. 655-665.
[55] Falsey, A. R., E. E. Walsh, and F. G. Hayden, Rhinovirus and Coronavirus Infection-Associated Hospitalizations among Older Adults. The Journal of Infectious Diseases, 2002. 185 (9): p. 1338-1341.
[56] Tsuji, M., Potential anti-SARS-CoV-2 drug candidates identified through virtual screening of the ChEMBL database for compounds that target the main coronavirus protease. FEBS Open Bio, 2020. 10 (6): p. 995-1004.
[57] Raj, R., Analysis of non-structural proteins, NSPs of SARS-CoV-2 as targets for computational drug designing. Biochemistry and Biophysics Reports, 2021. 25: p. 100847.
[58] Mielech, A. M., A. Kilianski, Y. M. Baez-Santos, A. D. Mesecar, and S. C. Baker, MERS-CoV papain-like protease has deISGylating and deubiquitinating activities. Virology, 2014. 450-451: p. 64-70.
[59] Frieman, M., K. Ratia, R. E. Johnston, A. D. Mesecar, and R. S. Baric, Severe Acute Respiratory Syndrome Coronavirus Papain-Like Protease Ubiquitin-Like Domain and Catalytic Domain Regulate Antagonism of IRF3 and NF-κB Signaling. Journal of Virology, 2009. 83 (13): p. 6689.
[60] Eleftheriou, P., D. Amanatidou, A. Petrou, and A. Geronikaki, In Silico Evaluation of the Effectivity of Approved Protease Inhibitors against the Main Protease of the Novel SARS-CoV-2 Virus. Molecules (Basel, Switzerland), 2020. 25 (11): p. 2529.
[61] Chan, J. F.-W., S. Yuan, K.-H. Kok, K. K.-W. To, H. Chu, J. Yang, F. Xing, J. Liu, C. C.-Y. Yip, R. W.-S. Poon, H.-W. Tsoi, S. K.-F. Lo, K.-H. Chan, V. K.-M. Poon, W.-M. Chan, J. D. Ip, J.-P. Cai, V. C.-C. Cheng, H. Chen, C. K.-M. Hui, and K.-Y. Yuen, A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. The Lancet, 2020. 395 (10223): p. 514-523.
[62] Kerns, E. H. and L. Di, Chapter 22 - Methods for Profiling Drug-like Properties: General Concepts, in Drug-like Properties: Concepts, Structure Design and Methods, E. H. Kerns and L. Di, Editors. 2008, Academic Press: San Diego. p. 257-259.
[63] Zoete, V., M. Cuendet, U. Röhrig, A. Grosdidier, and O. Michielin, Molecular Modeling of Proteins: From Simulations to Drug Design Applications. 2009. p. 247-281.
[64] Morris G. M. and Lim-Wilby M., Molecular Docking. Molecular Modeling of Proteins, ed. Kukol A. Vol. Methods Molecular Biology™. 2008: Humana Press. https://doi.org/10.1007/978-1-59745-177-2_19.
[65] Muhammad T. Islam., Chandan Sarkar., Dina M. El-Kersh., Sarmin Jamaddar., Shaikh J. Uddin., Jamil A. Shilpi., and M. S. Mubarak, Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. Phytotherapy Research, 2020.
[66] Kitchen, D. B., H. Decornez, J. R. Furr, and J. Bajorath, Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Reviews Drug Discovery, 2004. 3 (11): p. 935-949.
[67] Dill, K. A., S. B. Ozkan, M. S. Shell, and T. R. Weikl, The protein folding problem. Annual review of biophysics, 2008. 37: p. 289-316.
[68] Macchiagodena, M., M. Pagliai, and P. Procacci, Inhibition of the Main Protease 3CL-pro of the Coronavirus Disease 19 via Structure-Based Ligand Design and Molecular Modeling. 2020.
[69] Rahman, F., S. Tabrez, R. Ali, A. S. Alqahtani, M. Z. Ahmed, and A. Rub, Molecular docking analysis of rutin reveals possible inhibition of SARS-CoV-2 vital proteins. Journal of traditional and complementary medicine, 2021. 11 (2): p. 173-179.
[70] Islam, M. T., C. Sarkar, D. M. El-Kersh, S. Jamaddar, and S. J. Uddin, Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. 2020.
[71] Mishra, R., R. Kumari, and J. P. Yadav, Antiviral potential of phytoligands against chymotrypsin-like protease of COVID-19 virus using molecular docking studies: An optimistic approach CURRENT STATUS: UNDER REVIEW SUBJECT AREAS Pharmacodynamics. 2020.
[72] Sekiou, O., I. Bouziane, Z. Bouslama, and A. Djemel, In-Silico Identification of Potent Inhibitors of COVID-19 Main Protease (Mpro) and Angiotensin Converting Enzyme 2 (ACE2) from Natural Products: Quercetin, Hispidulin, and Cirsimaritin Exhibited Better Potential Inhibition than Hydroxy-Chloroquine Against COVID-19 Main Protease Active Site and ACE2. 2020.
[73] Dharmendra Kumar, M. and S. Deepak, Evaluation of Traditional Ayurvedic Preparation for Prevention and Management of the Novel Coronavirus (SARS-CoV-2) Using Molecular Docking Approach. 2020.
[74] Russo, M., S. Moccia, C. Spagnuolo, I. Tedesco, and G. L. Russo, Roles of flavonoids against coronavirus infection. Chemico-biological interactions, 2020. 328: p. 109211-109211.
[75] Russo, M., C. Spagnuolo, I. Tedesco, and G. L. Russo, Phytochemicals in cancer prevention and therapy: truth or dare? Toxins, 2010. 2 (4): p. 517-551.
[76] Antonio, A. d. S., L. S. M. Wiedemann, and V. F. Veiga-Junior, Natural products' role against COVID-19. RSC Advances, 2020. 10 (39): p. 23379-23393.
[77] Wang, T.-Y., Q. Li, and K.-S. Bi, Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian journal of pharmaceutical sciences, 2018. 13 (1): p. 12-23.
[78] Elfawal, M. A., M. J. Towler, N. G. Reich, P. J. Weathers, and S. M. Rich, Dried whole-plant Artemisia annua slows evolution of malaria drug resistance and overcomes resistance to artemisinin. Proceedings of the National Academy of Sciences of the United States of America, 2015. 112 (3): p. 821-826.
[79] Elfawal, M. A., M. J. Towler, N. G. Reich, D. Golenbock, P. J. Weathers, and S. M. Rich, Dried Whole Plant Artemisia annua as an Antimalarial Therapy. PLOS ONE, 2012. 7 (12): p. e52746.
[80] Daddy, N. B., L. M. Kalisya, P. G. Bagire, R. L. Watt, M. J. Towler, and P. J. Weathers, Artemisia annua dried leaf tablets treated malaria resistant to ACT and i.v. artesunate: Case reports. Phytomedicine: international journal of phytotherapy and phytopharmacology, 2017. 32: p. 37-40.
[81] Weathers, P. J., M. Towler, A. Hassanali, P. Lutgen, and P. O. Engeu, Dried-leaf Artemisia annua: A practical malaria therapeutic for developing countries? World journal of pharmacology, 2014. 3 (4): p. 39-55.
[82] Nair, M. S., Y. Huang, D. A. Fidock, M. J. Towler, and P. J. Weathers, <em>Artemisia annua</em> hot-water extracts show potent activity <em>in vitro</em> against COVID-19 variants including delta. bioRxiv, 2021: p. 2021.09.08.459260.
[83] Chekem, L. and S. Wierucki, [Extraction of artemisinin and synthesis of its derivates artesunate and artemether]. Médecine tropicale: revue du Corps de santé colonial, 2007. 66: p. 602-5.
[84] Quimque, M. T. J., K. I. R. Notarte, R. A. T. Fernandez, M. A. O. Mendoza, R. A. D. Liman, J. A. K. Lim, L. A. E. Pilapil, J. K. H. Ong, A. M. Pastrana, A. Khan, D.-Q. Wei, and A. P. G. Macabeo, Virtual screening-driven drug discovery of SARS-CoV2 enzyme inhibitors targeting viral attachment, replication, post-translational modification and host immunity evasion infection mechanisms. Journal of Biomolecular Structure and Dynamics, 2020: p. 1-18.
[85] Kapepula, P. M., J. K. Kabengele, M. Kingombe, F. Van Bambeke, P. M. Tulkens, A. Sadiki Kishabongo, E. Decloedt, A. Zumla, S. Tiberi, F. Suleman, L. Tshilolo, J.-J. Muyembe-TamFum, A. Zumla, and J. B. Nachega, Artemisia Spp. Derivatives for COVID-19 Treatment: Anecdotal Use, Political Hype, Treatment Potential, Challenges, and Road Map to Randomized Clinical Trials. The American journal of tropical medicine and hygiene, 2020. 103 (3): p. 960-964.
[86] Durán-Iturbide, N. A., B. I. Díaz-Eufracio, and J. L. Medina-Franco, In Silico ADME/Tox Profiling of Natural Products: A Focus on BIOFACQUIM. ACS omega, 2020. 5 (26): p. 16076-16084.
[87] Egan, W. J., K. M. Merz, and J. J. Baldwin, Prediction of Drug Absorption Using Multivariate Statistics. Journal of Medicinal Chemistry, 2000. 43 (21): p. 3867-3877.
[88] Pires, D. E. V., T. L. Blundell, and D. B. Ascher, pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. Journal of medicinal chemistry, 2015. 58 (9): p. 4066-4072.
[89] Paramashivam, S. K., K. Elayaperumal, B. B. Natarajan, M. D. Ramamoorthy, S. Balasubramanian, and K. N. Dhiraviam, In silico pharmacokinetic and molecular docking studies of small molecules derived from Indigofera aspalathoides Vahl targeting receptor tyrosine kinases. Bioinformation, 2015. 11 (2): p. 73-84.
[90] Van de Waterbeemd, H. and E. Gifford, ADMET in silico modelling: Towards prediction paradise? Nature reviews. Drug discovery, 2003. 2: p. 192-204.
[91] Amin, M. L., P-glycoprotein Inhibition for Optimal Drug Delivery. Drug target insights, 2013. 7: p. 27-34.
[92] König, J., F. Müller, and M. F. Fromm, Transporters and Drug-Drug Interactions: Important Determinants of Drug Disposition and Effects. Pharmacological Reviews, 2013. 65 (3): p. 944.
[93] Chiesa, N., B. Rosati, A. Arcangeli, M. Olivotto, and E. Wanke, A novel role for HERG K+ channels: spike-frequency adaptation. The Journal of physiology, 1997. 501 (Pt 2) (Pt 2): p. 313-318.
[94] Hedley, P., P. Jørgensen, S. Schlamowitz, R. Wangari, J. Moolman-Smook, P. Brink, J. Kanters, V. Corfield, and M. Christiansen, The Genetic Basis of Long QT and Short QT Syndromes: A Mutation Update. Human mutation, 2009. 30: p. 1486-511.
[95] Rudic, B., R. Schimpf, and M. Borggrefe, Short QT Syndrome - Review of Diagnosis and Treatment. Arrhythmia & electrophysiology review, 2014. 3 (2): p. 76-79.
[96] Jo, S., S. Kim, D. H. Shin, and M.-S. Kim, Inhibition of SARS-CoV 3CL protease by flavonoids. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020. 35 (1): p. 145-151.
[97] Costela-Ruiz, V. J., R. Illescas-Montes, J. M. Puerta-Puerta, C. Ruiz, and L. Melguizo-Rodríguez, SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine & growth factor reviews, 2020. 54: p. 62-75.
[98] Pastor, N., M. C. Collado, and P. Manzoni, Phytonutrient and Nutraceutical Action against COVID-19: Current Review of Characteristics and Benefits. Nutrients, 2021. 13 (2): p. 464.
[99] Giovinazzo, G., C. Gerardi, C. Uberti-Foppa, and L. Lopalco, Can Natural Polyphenols Help in Reducing Cytokine Storm in COVID-19 Patients? Molecules (Basel, Switzerland), 2020. 25 (24): p. 5888.
[100] Myhrstad, M. C. W., H. Carlsen, O. Nordström, R. Blomhoff, and J. Moskaug, Flavonoids increase the intracellular glutathione level by transactivation of the [gamma]-glutamylcysteine synthetase catalytical subunit promoter. Free Rad. Biol. Med., 2002. 32: p. 386–393.
[101] Ilyasov, I., V. Beloborodov, D. Antonov, A. Dubrovskaya, R. Terekhov, A. Zhevlakova, A. Saydasheva, V. Evteev, and I. Selivanova, Flavonoids with Glutathione Antioxidant Synergy: Influence of Free Radicals Inflow. Antioxidants, 2020. 9 (8).
[102] Wu, A., P. Niu, L. Wang, H. Zhou, X. Zhao, W. Wang, J. Wang, C. Ji, X. Ding, X. Wang, R. Lu, S. Gold, S. Aliyari, S. Zhang, E. Vikram, A. Zou, E. Lenh, J. Chen, F. Ye, N. Han, Y. Peng, H. Guo, G. Wu, T. Jiang, W. Tan, and G. Cheng, Mutations, Recombination and Insertion in the Evolution of 2019-nCoV. bioRxiv, 2020: p. 2020.02.29.971101.
[103] Chou, C. T., Theoretical Basis, Experimental Design, and Computerized Simulation of Synergism and Antagonism in Drug Combination Studies. Pharmacol Rev 2006. 58: p. 621–681.
[104] Svensson, U. S., R. Sandstrom, O. Carlborg, H. Lennernas, and M. Ashton, High in situ rat intestinal permeability of artemisinin unaffected by multile dosing and with no evidence of Pglycoprotein involvement. Drug Metab. Disp., 1999. 27 p. 227–232.
Cite This Article
  • APA Style

    Randriamamisolonirina Tendrinarisoa, Andriamaroarison Ando Tiana, Razafindrafara Mirantsoa Suzanne, Andriantsimahavandy Andriambadanaina Abel, Rakotosaona Rianasoambolanoro, et al. (2021). Screening of Secondary Metabolites in Artemisia annua as Potential Inhibitors of Coronavirus Proteases by in silico Approaches. Advances in Bioscience and Bioengineering, 9(4), 96-110. https://doi.org/10.11648/j.abb.20210904.12

    Copy | Download

    ACS Style

    Randriamamisolonirina Tendrinarisoa; Andriamaroarison Ando Tiana; Razafindrafara Mirantsoa Suzanne; Andriantsimahavandy Andriambadanaina Abel; Rakotosaona Rianasoambolanoro, et al. Screening of Secondary Metabolites in Artemisia annua as Potential Inhibitors of Coronavirus Proteases by in silico Approaches. Adv. BioSci. Bioeng. 2021, 9(4), 96-110. doi: 10.11648/j.abb.20210904.12

    Copy | Download

    AMA Style

    Randriamamisolonirina Tendrinarisoa, Andriamaroarison Ando Tiana, Razafindrafara Mirantsoa Suzanne, Andriantsimahavandy Andriambadanaina Abel, Rakotosaona Rianasoambolanoro, et al. Screening of Secondary Metabolites in Artemisia annua as Potential Inhibitors of Coronavirus Proteases by in silico Approaches. Adv BioSci Bioeng. 2021;9(4):96-110. doi: 10.11648/j.abb.20210904.12

    Copy | Download

  • @article{10.11648/j.abb.20210904.12,
      author = {Randriamamisolonirina Tendrinarisoa and Andriamaroarison Ando Tiana and Razafindrafara Mirantsoa Suzanne and Andriantsimahavandy Andriambadanaina Abel and Rakotosaona Rianasoambolanoro and Ramanitrahasimbola David and Rakotonirina Hanitra Clara and Maminiaina Olivier Fridolin},
      title = {Screening of Secondary Metabolites in Artemisia annua as Potential Inhibitors of Coronavirus Proteases by in silico Approaches},
      journal = {Advances in Bioscience and Bioengineering},
      volume = {9},
      number = {4},
      pages = {96-110},
      doi = {10.11648/j.abb.20210904.12},
      url = {https://doi.org/10.11648/j.abb.20210904.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.abb.20210904.12},
      abstract = {To date, no specific drug has been proven to treat COVID-19. It encourages people to use medicinal plants to treat or protect themselves against these diseases. Artemisia annua is one of the promising plants that have already been used in coronary disease. However, the antiviral compounds present in this plant remain poorly known. In this study, we aimed to identify some of these molecules by in silico approach. During the screening, 102 secondary metabolites of Artemisia annua were selected and the two viral proteins 3CLpro and PLpro of SARS-CoV2 were selected as targets. Then, a preliminary analysis was performed to determine the inhibition capacity of these phytoligands for the two viral proteins. Then, the phytoligands with stronger interaction energy with these target proteins were selected and their physicochemical properties and ADMET profile were analyzed. Consequently, 13 molecules of Artemisia annua, namely Apigenin, Axillarin, Crysoeriol, 8-Hydroxygalangin, Isorhamnetin, Kaempferol, Luteolin, Luteolin-7-methyleter, Quercetagetin-3-4-dimethyleter, Quercetagetin-3-4-dimethyleter, Quercetin-3-methyleter, Quercetin, Rhamnetin, and Tamarixetin can inhibit the two proteases of SARS CoV2. They also have a good physicochemical profile and an ADMET property in the human. These molecules may be compounds promoting an antiviral treatment in Artemisia annua. To complete these results, in vitro tests are necessary.},
     year = {2021}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Screening of Secondary Metabolites in Artemisia annua as Potential Inhibitors of Coronavirus Proteases by in silico Approaches
    AU  - Randriamamisolonirina Tendrinarisoa
    AU  - Andriamaroarison Ando Tiana
    AU  - Razafindrafara Mirantsoa Suzanne
    AU  - Andriantsimahavandy Andriambadanaina Abel
    AU  - Rakotosaona Rianasoambolanoro
    AU  - Ramanitrahasimbola David
    AU  - Rakotonirina Hanitra Clara
    AU  - Maminiaina Olivier Fridolin
    Y1  - 2021/11/05
    PY  - 2021
    N1  - https://doi.org/10.11648/j.abb.20210904.12
    DO  - 10.11648/j.abb.20210904.12
    T2  - Advances in Bioscience and Bioengineering
    JF  - Advances in Bioscience and Bioengineering
    JO  - Advances in Bioscience and Bioengineering
    SP  - 96
    EP  - 110
    PB  - Science Publishing Group
    SN  - 2330-4162
    UR  - https://doi.org/10.11648/j.abb.20210904.12
    AB  - To date, no specific drug has been proven to treat COVID-19. It encourages people to use medicinal plants to treat or protect themselves against these diseases. Artemisia annua is one of the promising plants that have already been used in coronary disease. However, the antiviral compounds present in this plant remain poorly known. In this study, we aimed to identify some of these molecules by in silico approach. During the screening, 102 secondary metabolites of Artemisia annua were selected and the two viral proteins 3CLpro and PLpro of SARS-CoV2 were selected as targets. Then, a preliminary analysis was performed to determine the inhibition capacity of these phytoligands for the two viral proteins. Then, the phytoligands with stronger interaction energy with these target proteins were selected and their physicochemical properties and ADMET profile were analyzed. Consequently, 13 molecules of Artemisia annua, namely Apigenin, Axillarin, Crysoeriol, 8-Hydroxygalangin, Isorhamnetin, Kaempferol, Luteolin, Luteolin-7-methyleter, Quercetagetin-3-4-dimethyleter, Quercetagetin-3-4-dimethyleter, Quercetin-3-methyleter, Quercetin, Rhamnetin, and Tamarixetin can inhibit the two proteases of SARS CoV2. They also have a good physicochemical profile and an ADMET property in the human. These molecules may be compounds promoting an antiviral treatment in Artemisia annua. To complete these results, in vitro tests are necessary.
    VL  - 9
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Malagasy Institute of Veterinary Vaccines (IMVAVET), Antananarivo, Madagascar

  • Malagasy Institute of Veterinary Vaccines (IMVAVET), Antananarivo, Madagascar

  • Malagasy Institute of Veterinary Vaccines (IMVAVET), Antananarivo, Madagascar

  • Department of Biochemistry, Faculty of Sciences, University of Antananarivo, Antananarivo, Madagascar

  • National Centre for the Application of Pharmaceutical Research, Antananarivo, Madagascar

  • Mention Pharmacy, Faculty of Medicine, University of Antananarivo, Antananarivo, Madagascar

  • Malagasy Institute of Veterinary Vaccines (IMVAVET), Antananarivo, Madagascar

  • Malagasy Institute of Veterinary Vaccines (IMVAVET), Antananarivo, Madagascar

  • Sections