Part 11

Projective K-theory







Throughout this part we use the following notation: 7 is a group, 1 is its neutral
element, K is the complex Hilbert space {*(T), (T,)se is an increasing sequence of
finite subgroups of T the union of which is T, Tp := {1}, E is a unital commutative
C*-algebra, and f is a Schur E-function for 7' (Definition 5.0.1).

In the usual K-theory the orthogonal projections (used for Ky) and the unitaries (used
for K;) are identified with elements of the square matrices, which is not a very elegant
procedure from the mathematical point of view, but is justified as a very efficient
pragmatic solution. It seems to us that in the present more complicated construction the
danger of confusion produced by these identifications is greater and we decided to
separate these three domains. Unfortunately this separation complicates the presentation
and the notation. Moreover, we also do identifications! In general the stability does not
hold. We present in Theorem 6.3.3 (as an example) some strong conditions under which
stability holds for K.

For projective representations of groups we use [2] (but the groups will be finite here)
and for the K-theory we use [4], the construction of which we follow step by step. In the
sequel we give a list of notation used in this Part.

1) We put for every involutive algebra F,
PrF:={PcF|P=P =P}
and forevery A C F,
A ={xeF|ycA=xy=yx}.
2) We denote for every unital involutive algebra F by 1 its unit and set

UnF:={UcF|UU*=UU=1;}.

3) If F is a unital C*-algebra and U,V € Un F then we denote by U ~, V the assertion
U and V are homotopic in Un F and put

UnoF::{UEUnF|U~h1p}.

Moreover GL(F) denotes the group of invertible elements of F and GLo(F) the
elements of GL(F') which are homotopic to 1r in GL(F).



4) If F is a unital C*-algebra and G is a unital C*-subalgebra of F' then we denote by
UngF the set of elements of Un F which are homotopic to an element of Un G
in Un F and by GLg(F) the set of elements of GL(F) which are homotopic to an
element of GL(G) in GL(F).

5) If Qis a topological space, F a C*-algebra, and A C F then we put

C(QA) = {XcC(QF) | 0cQ=X(w)cA}.

6) Hilbert E-C*-algebra ([1] Definition 5.6.1.4).

7) % (H) ([1] Definition 5.6.1.7).
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DEFINITION 5.0.1 Let S be a group and let 1 be its neutral element. A Schur E-
function for S is a map
f:8xS—UnE

such that f(1,1) = 1g and

f(rs)f(rs,t) = f(rst)f(s,1)
for all r,s,# € T. We denote by .Z (S, E) the set of Schur E-functions for S.

Schur functions are also called normalized factor set or multiplier or two-co-cycle (for

S with values in Un E) in the literature.

DEFINITION 5.0.2 Let F be an full E-C*-algebraand n € IN*. We put for every ¢ € T,,,
EcF"=F®I*(T,),and x € F,

VE=VIE T, —F, s— ft,r 's)E(t ),

x®idg : FT" — FT", ‘5 — (ng)seT,ﬁ

so we have
(xQidg)\V,E T, — F, s— f(t,t 7 s)xE (™ s) .
We define

F, ::{ Y (X ®idk)V;

teT,

(Xt)tETn E FTn } .

fF-%Gisa morphism in €x then we put

Gn:Fn— Gy, X— Y ((0X,) ®id, )V, .

teT,

F, is a full E-C*-subalgebra of % (F*) (Proposition 4.1.7 b), [2] Theorem 2.1.9 h),
k)), so 1g, = 1g, and @, is an E-C*-homomorphism, injective or surjective if ¢ is so
([2] Corollary 2.2.5). Moreover F;, is canonically a full E-C*-subalgebra of F, for every
m € IN*, m < n ([2] Proposition 2.1.2). For every n € IN, F,, X G, = (F x G),.

DEFINITION 5.0.3 We fix in Part I a sequence (Cy,)sen € [1 En, put
nelN

A, :=C;Cy, B, :=C,C;,
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Chapter 5 Some Notation and the Axiom

and assume Ay, B, € PrE,, Ay + B, = 1g = 1g,, and G, € (E,_ ) for every n € IN (where
we used the inclusion E,_; C E, in the last relation).

From
Ay =A,(A,+B,) =A2+A,B,=A,+A,B,,

Cn = Cn(An +Bn) = CnAn +Can = Cn +C2C::

we get A,B, = C2> = 0 for every n € IN.

We have C, € (F,—1)¢ for every n € IN and for every full E-C*-algebra F (where we

used the inclusion F,,_| C F,).

DEFINITION 5.0.4 Let (S,;)meN be a sequence of finite groups and (k,)qcN a strictly

kn
increasing sequence in IN such that 7, = [] S, for all n € IN. We identify S,, with a
m=1

subgroup of T for every m € IN. Assume that for every m € IN there is a g,, € % (Sy, E)
such that

f(s,t) = H g (Smytm)

melN
forall s,t € T. Foreveryn € Nletm € IN, k,—1 <m < kp, let x : Zp x Zy — S, be an
injective group homomorphism, and f;, 3, € Un E. We put

a:=yx(1,0), b:=x(0,1), o := f(a,a), o := f(b,b),

1 . .
Co =5 ((Br@idk)V] + (B @ idg)Vy) -
If f(a,b) = —f(b,a) = 1§ and a; B} + w37 = 0 then (Cy)nen fulfills the conditions of
Axiom 5.0.3.

The assertion follows from [2] Theorem 2.2.18 a), b). [ |

Remark 1. f E=C, S,, = Zr X Z, and k,, = m for every m € IN then (by [2]
Proposition 3.2.1 ¢) and [2] Corollary 3.2.2 d)) we may choose (C,)qcN in such a way

that the corresponding K-theory coincides with the classical one.

Remark 2. Denote by 7, the set of permutations p of IN such that
{jJeEN|p(j)#j} C N4y, so T is the set of permutations p of IN such that
{j€IN| p(j)# j} is finite. This example shows that the given conditions for 7, in
Example 5.0.4 are not automatically fulfilled.
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6.1 K for €g

6.1 Kjfor Cg

Throughout this section F' denotes a full E-C*-algebra.

PROPOSITION 6.1.1 Letn € IN.

a) An, B, € (F,—1)¢ (where we used the inclusion F,_ C F,).
b) A,F,A, is a unital C*-algebra with A,, as unit.
c) The map
pF F_1 —F, Xr—AX=XA,=AXA,=CXC,
(where we used the inclusion F,_1 C F,) is an E-linear injective
C*-homomorphism.
Only the injectivity of p!" needs a proof. Let X € F,_; with p¥'X = 0. Then
CiC,X=0, XC,=C,X=0,

XB,=XC,C:=0, X=X(A,+B,)=0. |

Remark. pl is not unital since pf 1z = A,,.

DEFINITION 6.1.2 We put for all m,n € IN, m < n,
P =P OPa10 0Pyt Fn — Fy .

Then {(F)nen, (P} )nme} is an inductive system of full E-C*-algebras with injective
E-linear (but not unital) maps. We denote by {F_,, (p} e} its algebraic inductive
limit. F_, is an involutive (but not unital) algebra endowed with the structure of an
algebraic E-C*-algebra, pl is injective and E-linear for every n € IN, and (Impl) e
is an increasing sequence of involutive subalgebras and algebraic E-C*-subalgebras of

F_, the union of which is F_,. We put for every X € F,,

X, =X,,=x =plx,
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and
=15, = py 15, = py 1k,
F,:=Impl .
In particular
(An)ﬁ ZPfAn = lﬁ,nfla (Bn)ﬂ :P,me (Cn)ﬁ :Pfcn .
We put

Pri,:={PeF,|P=P =P} =] (PrF.,).
nelN

ForP,Q € PrF_, weput P~ Q ifthereisan X € F_, withX*X = P, XX* = Q (in this case
there is an n € IN such that P,Q,X € F_,,); ~q is the Murray - von Neumann equivalence
relation, which we shall use also in the case of C*-algebras. For every P € PrF_, we

denote by P its equivalence class in PrF | ~.
Often we shall identify F, with F_,,, by using p/. By this identification F_,, is a full
E-C*-algebra with 1_,,, as unit.

F_, is also endowed with a C*-norm and its completion in this norm is the C*-inductive
limit of the above inductive system, but we shall not use this supplementary structure in

the sequel.

PROPOSITION 6.1.3 Ifn€ INand P € PrF_, ,_1 then

P = (A) P ~0 (By) P = (Cy) - P(Cy)", .

We have
((Cu)=P)" ((Ca)=P) = P(Ci)%, (C) - P = (An) P,
((Ca)=P)((Ca) = P)" = P(Ca) - (Co) ", P = (Bn) P,
$0 (Ap) P ~q (B,)P. [ |

PROPOSITION 6.1.4 For every finite family (P,);cs in PrF_, there is a family (Q;)icr in
PrF_, such that P; ~y Q; for every i € I and Q;Q; = 0 for all distinct i, j € I.
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6.1 K for €g

We prove the assertion by complete induction with respect to Card I. Let iy € I and put
J:=TI\{ip}. We may assume, by the induction hypothesis, that there is an n € IN with
P € PrF_, ,_ foralli € I and F,P; = 0 for all distinct 7, j € J. By Proposition 6.1.3,

[)io - (An)—>E0 ~0 (Cn)—>Pto(Cn)*_> = QioJ

and
0ivP; = (Co)=Py(Co)", (An) Py = (Ca) s Py (CiAs) Py = 0

forall j € J. |

PROPOSITION 6.1.5 Let P,Q € PrF.,.

a) IfP',P".Q',Q" € PrF_, such that
PNO P/ ~0 P//7 Q ~0 Q/ ~0 Q//, P/Q/ — P//Q// — O

then
P/+Ql ~0 P//+Q// .
We put
P®Q:=P+0 .
b) PrF_, ]/~ endowed with the above composition law @ is an additive semi-group
with 0 as neutral element. We denote by Ko(F) its associated Grothendieck group

and by
[~}02PFF% —)Ko(F)

the Grothendieck map ([4] 3.1.1).

¢) Ko(F)={[Plo—[Qlo| POEPrF.}.

d) Forevery a € Ko(F) there are P,Q € PrF_, and n € IN such that

P:P(An)ﬁy Q:Q(Bn)%7 a= [P]O_[Q}Oo

a)Let X,Y € F_, with
XX =P, Xx* =P, Y'Y =0, Yy*=0".
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Chapter 6 The Functor Kj

Then
0=PQ =X*XY"Y, 0=P'Q"=XX"YY"

SO
XY*=X"Y =0, X+Y)'X+Y)=X'X+Y'Y=P +(,

(X+Y)(X+Y)* :XX* +YY* :])//_|_Q//7 P/+Ql ~0 P//+Ql/ .
b) and c) follow from a) and Proposition 6.1.4.

d) follows from c) and Proposition 6.1.3. [ |

COROLLARY 6.1.6 The following are equivalent for alln € IN and P,Q € PrF_,,.

b) There is an R € PrF_, such that

PR=QR=0, P+R~oQ+R.

c) Thereisanm € IN, m > n+ 1, such that

P+ (Bm)ﬁ ~0 Q"' (Bm)ﬁ

or (by identifying F,, with F_, )

m m m m
ITA|P+{1e— [T A |~ | [TA)o+{1e— [] A -
i=n+1 i=n+1 i=n+1 i=n+1

a = b follows from Proposition 6.1.4 (and from the definition of the Grothendieck
group).

b = c¢. We may assume R € F_, ,,_1 for some m > n+ 1. By Proposition 6.1.3,
P+ (Bu)sR~0 P+R ~0 Q+R ~ O+ (Bu)-R,

SO
P+ (Bm)—> =P+ (Bm)—>R+ ((Bm)—> - (Bm)—>R) ~0

~0 Q0+ (Bm)%R'F ((Bm)% - (Bm)%R) =0+ (Bm)% .
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6.1 K for €g

It follows

( lm_[ A,‘)P—F <IE— ﬁ Ai> :p£7nP+Bm+ (Am— ﬁ Al‘> ~0

i=n+1 i=n+1 i=n+1

~0 p;l;,nQJer+ (Am ﬁ Ai) = ( ﬁ A,’) o+ <1E ﬁ A,‘) .

i=n+1 i=n+1 i=n+1
c=-a is trivial. [ |

COROLLARY 6.1.7 Iffor everyn € INand P € Pr F_,,, thereisanm € N, m > n+1,
such that P+ (Byy)— ~o 1 then Ko(F) = {0}.

Let P,Q € Pr F_,. By our hypothesis there is an m € IN such that P+ (By,,)— ~o Q +
(Bm)—. By Corollary 6.1.6 ¢ = a, [P]o = [Q]o. Thus by Proposition 6.1.5 ¢), Ko(F) = {0}.
|

COROLLARY 6.1.8 Ky(E) # {0}.

Assume Koy(E) = {0}. Then [1g]o = [0]o, so by Corollary 6.1.6 a = ¢, there is ann € IN
such that

n
lg~ole—[JAi
i=1

14
Let ® be a point of the spectrum of E. Since E,(®) is a product of square matrices the
above relation leads to a contradiction by using the trace function. [

PROPOSITION 6.1.9 Let 4 be an additive group and v : PrF_, — % a map such that

1) POQePrF,,PO=0 = v(P+Q)=v(P)+Vv(Q).

2) PQEPIrF,, P~y Q = V(P)=V(Q).

Then there is a unique group homomorphism U : Ko(F) — 9 such that W[P]o = v(P) for
every P € PrF_,.
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By 2), v is well-defined on PrF_,/ ~¢ and by 1) and Proposition 6.1.5 a),b), v is an
additive map on PrF_, / ~¢. By 2) and Corollary 6.1.6 a=-b, v is well-defined on Ky(F).
The existence and uniqueness of u with the given properties follows now from Proposition
6.1.5¢). |

PROPOSITION 6.1.10 Let F —%5 G be a morphism in €.

a) Form,n € IN, m < n, the diagram

oF
n,m
FE, —— F,

o e

Gn — G,
p’?ﬂ‘l

is commutative. Thus there is a unique E-linear involutive algebra homomorphism
o, F, — G_, with

P 0Py =Py 0P
for every n € IN.

b) @, is injective or surjective if ¢ is so.
¢) There is a unique group homomorphism Ko(@) : Ko(F) — Ko(G) such that
Ko(@)[Plo = [@-Plo
for every P € PrF_,.
d) If @ is the identity map then Ko (@) is also the identity map.

e) If =0 then Ko(¢) = 0.

a) It is sufficient to prove the assertion forn =m+1. For X € F,,,,

ouPEX = 0,(A,X) = A0, X = pC @, X

(where we used the inclusion F,, C F;,).

b) follows from the fact that for every n € IN, ¢, is injective or surjective if @ is so ([2]
Theorem 2.1.9 a))).
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¢) By a) and Proposition 6.1.3, the map
PrF, — Ko(G), P+ [p_Po
possesses the properties from Proposition 6.1.9.

d) and e) are obvious.

COROLLARY 6.1.11 IfF 256 Hare morphisms in €g then

(Vo) =y 00,  Ko(woo)=Ko(y)oKo(p). u
PROPOSITION 6.1.12

a) The maps
u:F—F, (0,x)— o+x,

AME—F, ar—(o,—a)
are E-C*-homomorphisms.

b)
ot =idp, lFou+l/o7rF:id,:-,

Ko(1") o Ko(i) + Ko(A") o Ko(n") = idy, ) -

c)
Kolth) | SO,
0 — Ko(F) ——— Ko(F) k,0F) Ko(E) —0

is a split exact sequence.

a) is easy to see.

v

b) For (at,x), (B.y) € F,
lF[J,((X,x) = (Oaa+x)7 )L,TEF((X,)C) = ((X,*(X),
(1" u(ex)) (A" (B,y)) = (0,0+x)(B,—B) = (0,0),

W+ AT (o) = (t,)
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so tf o+ A’ oxl is a full E-C*-homomorphism and
Fout+Aonf =idy .
By a) and Corollary 6.1.11,
Fop, + A onf, =idy .
By Proposition 6.1.10 c),d) and Corollary 6.1.11, for P € PrF .,
(Ko(1") o Ko (1) + Ko(L") 0 Ko (7)) [Plo = Ko(1" o ) [Plo + Ko(A 0 ") [Plo =
= [thusPlo+ AL 75 Plo = [(1F o+ A" om") -, Plo = [Plo
so by Proposition 6.1.5 c),

Ko(1") o Ko(u) +Ko(A") o Ko (") = id, ) -

¢) By b), Proposition 6.1.10 d),e), and Corollary 6.1.11,
K()(EF) OK()(IF) = K()(7EF o lF) =0,
Ko(n") o Ko(AT) = Ko(n" 0 AT) = idy k) ,

Ko(u) o Ko(1") = Ko(uo1") = idyr)

and so Ko(1¥) is injective. By b), for a € Ko(F),
a= K()(lF)Ko(‘u)a +K0()~/)K0(7ICF)CI .

Thus if a € KerKo(nf) then a = Ko(i")Ko(u)a € ImKoy(1¥), and
KerKo(nF) = ImKy(1F).

6.2 KO for SﬁE

DEFINITION 6.2.1 Let F be an E-C*-algebra and consider the split exact sequence

F
FE—0

T

Fos
0—F—F

=l

introduced in Definition 4.1.4. We put

Ko(F) := KerKo(n") .

SO
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By Proposition 6.1.12 c), this definition does not contradict the definition given in

Proposition 6.1.5 b) for the case that F is an full E-C*-algebra.

Ko({0}) = {0} since 1% is bijective.
PROPOSITION 6.2.2 Let F i) G be a morphism in Mg .

a) The diagram

F-—‘“F -+ F
o| |0 [
G G E
16 0
is commutative.
b) The diagram
Ko(F) —— Ko(F) 2" Ky(E)
Ko(fp)l lKo(fP) I
Ko(G) —— Ko(G) —— Ko(E)
c Ko(n%)

is commutative, where Ko(@) is defined by Ko(Q).

c) If P € PrF_, then
Ko(9)[Plo = [¢-Plo -

d) K()(ldF) = idKO(F)'

e) If =0 then Ko(¢) = 0.

a) is obvious.

b) By a) and Corollary 6.1.11, the right part of the diagram is commutative. This

implies the existence (and uniqueness) of Ko ().

c¢) By a), b), Proposition 6.1.10 a),c), and Corollary 6.1.11,

Ko(@)[Plo = Ko(®)[15,Plo = [@-15,Plo = 150, Plo = [@-P]o -

d) and e) follow from c) and Proposition 6.1.5 c).
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COROLLARY 6.2.3 Let F -2+ G -5 H be morphisms in M.

a) Ko(y)oKo(9) =Ko(yo o).

b) If ¢ is an isomorphism then Ko(@) is also an isomorphism and

Ko(@) ' =Ko(o ™).

a) follows from Proposition 4.1.5 b), Corollary 6.1.11, and Proposition 6.2.2 b).

b) follows from a) and Proposition 6.2.2 d). |

PROPOSITION 6.2.4 For every E-C*-algebra F,

Ko(F)={ [Plo—[c",P]o | PEPrF.,} .

For P € PrF._,, by Proposition 6.2.2 ¢) and Corollary 6.1.11 (since n¥ = nf o 7)),
Ko(7")[6L,Plo = [nf, 6", Plo = [7E, Plo = Ko(n")[P]o

SO
[Plo — [6".Plo € Ker Ko(n") = Ko (F) .

Let a € Ko(F). By Proposition 6.1.5 d), there are Q,R € PrF, and n € IN such that
0=0(An)-, R=R(By)-, a=[Qlo—[Rlo.
Then
a=[Q(An)~lo+[(Bn)— —R(Bn)-Jo = ([R(Bu) o = [(Bn)» — R(By) o) =

= [Q(An)% + ((Bn)ﬁ - (Bn)ﬁ)]ﬂ - [(Bn)%]() :

If we put
P:=0Q(An)— + ((Bu)— —R(By)-)

then
a=[Plo—[(Bx)-]o -
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By Proposition 6.2.2 ¢) and Corollary 6.1.11 (and Definition 4.1.4)
0=Ko(n")a = Ko(n")[Plo — Ko(n")[(Ba)]o = [x,Plo — [, (Ba) - ]o,
[0",Plo = [AL 2!, Plo = Ko(A")[x, Plo = Ko (A") [, (B4) Jo =

= [ALal (By)-Jo = (65, (Ba) - Jo = [(Ba) o,

a=[Plo—[o",Ply . n
PROPOSITION 6.2.5 Let F be an full E-C*-algebra and n € IN.

a) C,+C;; €lUngE,.
b) For X,Y € F,_|,

c) IfU,VeUnF,_1then A,U+B,V €eUnkF,.
d) IfU eUnF,_| then A,U+B, e UnF, and A,U+B,U* € Ung F,.

a) From
(Cﬂ +C;:)(C’Z +C;:) =B,+A,=1g

it follows that C, 4+ C;; is unitary. Being selfadjoint, its spectrum is contained in {—1,+1}
and so it belongs to Ung E,, ([4] Lemma 2.1.3 (ii)).

b) We have
(Ca+C)(AX +BaY )(Co+C,) = (GX+CY)(Ca+C) = BiX +A,Y .

¢) We have
(AU+B,V)(AU+B,V) =A,+B,=1g,

(A U+B,V) (AU+B,V)=A,+B,= 1.

d) By ¢), A,U +B, € UnF,. By b),

(Ch+CHAU +B,)(Ci+C) =B U+ A,
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so it follows from a), that A,U* 4+ B,, is homotopic to B,U* + A, in Un F;, and so

AU +B,U" = (AU +By)(An+B,U™)
is homotopic in Un F, to

(AnU +By)(AgU" +By) = Ap+ By = 1,
ie. A,U +B,U* € Uny E,. [ |
PROPOSITION 6.2.6 Let F be a full E-C*-algebra, n € IN, P.Q € Pr F,, and X € F,
with X*X = P, XX* = Q. Then there is a U € Ung F, ;2 with

U(AVH»ZAVH»IP)U* = An+2An+] Q, 1.€. UHP*)U: = Q% .

We have X(1z —P) = (1g — Q)X = 0. Put
Vi=ApiX +Coit(1g = P) +Cop (1g — Q)+ Bu1X* (€ Fyp) -

Then
V* :An+]X*+CZ+](1E —P)+Cn+](1E —Q)+Bn+]X,

VV* =A,110+Bni1(lg —P) +Ant1(1g — Q) + By 1P =Api1 + By = 15,
V'V =A1P+A1(lg—=P)+By1(1g = Q) + By 1Q =Auy1 +Bu1 =

soV e Un F, 1. Moreover
VAp 1P =Ap11X, An-HXV* =Ann10.

Put
U = An+2V +Bn+2V* .

By Proposition 6.2.5 d), U € Ung F,,4+>. We have
U(Api2401P)U" = (Api2V +BpaV*)Ap 2401 P(Ani 2V + B yaV) =
= An+2An+1X(An+2V* +Bn+2v) =Ap124n+10 u
PROPOSITION 6.2.7 Let F -5 G be a morphism in Mg and a € KerKo(o).
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a) Therearen € IN, P € Prlﬂn, and U € Uny Gvi,ﬁz such that

a=[Plo—[c5.P)o U(¢_PU"=0c%¢_,P.

b) If @ is surjective then there is a P € PrF_, such that

a= [Py —[cF, P)o, ¢P=0c%¢p.P.

a) By Proposition 6.2.4, there are m € IN and Q € PrI:”_,_,m_l such that
a=[0lo—[c",0lo -
Since ¢ o 6 = 6% 0 @, by Proposition 6.1.10 ¢) and Corollary 6.1.11,
0=Ko(@)a=[¢-0lo—[¢-0,0)o = [¢-0lo — [05¢-Qlo -
By Corollary 6.1.6 a=-c, there is an n € IN, n > m, such that
-0+ (Ba)— ~0 6500+ (Br)— = 05($-0+ (Ba)-) -

Put
P:=Q+ (B, €PrF,,.

Then
[Plo—[6%,Plo = [Qlo + [(Ba)~Jo — [6%,Ql0 — [(B) ]o = a,
[0, Plo— [650-,Plo = [¢-Qlo+ [(B)~Jo— [6%¢-Qlo— [(Br)~]o =0.

By Corollary 6.1.6 a=-b and Proposition 6.2.6, there is a U € Ung GVA_V,HZ with

U(¢p_P\U* = ¢P.

b) By a),therearen € IN,n > 2,0 € Prﬁin,z, and U € Uny GV%,, such that
a = [Qlo— (0%, 0o, U(¢-Q)U" =05¢-,0.

Since @, : F, — én is surjective, by [4] Lemma 2.1.7 (i), there is a V € Un F.,, with
@,V =U. We put

P:=VQOV*~y0
)

a=[Plo—[a%Plo

Science Publishing Group 179



Chapter 6 The Functor Kj

and
PP = (P-V)(9-0)(¢-V") =U(¢-Q)U" = of)(])_,Q,

PROPOSITION 6.2.8 Let
® v
0O—F—G—H—0

be an exact sequence in Mg.

a) Q_, is injective.
b) The following are equivalent for all X € G_,:

b)) X elm (Z)%.
by) WX =ocfly X
c) Ko(F) ptd Ko(G) o) Ko(H) is exact.

a) @ is injective (Proposition 4.1.5 a)) and the assertion follows from Proposition 6.1.10
b).

b1 = b, follows from yo @ = 0.

by = by. Let n € IN such that X € G_,,, which we identify with G,. Then X has the

form
X=Y ((0.%) ®idg)VC,

teTy,

where (0y,Y;) € G for every t € T,,, and so by by),

Y. (o, w) @idi )V = X = ol X = Y (04, 0) @idg )V, .

teTy teTy

It follows yY; = 0O for every ¢ € T, ([2] Theorem 2.1.9 a)). Thus for every ¢ € T, there is
aZ; € F with ¢Z, =Y, and we get

X = Z ((Oﬂr,(PZt) ®ldK)VtG =

teTy
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= ¢ (Z ((OC,,Z,)@idK)V,F> elm@p, CImp., .

1€T;,
¢) By Corollary 6.2.3 a) and Proposition 6.2.2 ),

Ko(w)oKo(9) =Ko(yog)=0

so ImKy(@) C KerKo(y). Let a € KerKo(y). By Proposition 6.2.7 b), there is a P €
Pr GH such that

a = [Plo—[6SPlo, Y P =0y P.

Then P has the form
P=Y ((04,X)®idg)VC

tely

for some n € N with (oy,X;) € E x G for every ¢ € T,,, where we identified G, with G_, ,,.
We get

Y (o, wX) @idg)VH = y,P= oty P =Y (0, 0) @idg)V .

teTy, teTy,

Thus yX; =0 ([2] Theorem 2.1.9 a)) and there is an ¥; € F with ¢Y; =X, forevery ¢ € T,,.
We put
0:= Y (&, Y)@idg)V) € PrE.,

tety

with the usual identification (¢ is an embedding !). Then

¢-0=Y ((os,0Y,) @id)VC = Y (04, X,) @idg )V, = P

tely, teTy
and by Proposition 6.2.2 ¢) (since ¢ o o' = %0 ),
Ko(9)([Qlo — [6%.Q0) = [¢-Qo — [¢—. 6", Qlo =
=[¢-0lo—[0%¢-Qlo = [Plo—[c5Plo=a.

Thus Ker Ko(y) C ImKy(@), Ker Ko(y) = ImKy (). |

PROPOSITION 6.2.9 (Split Exact Theorem for Ky) If
o Y
0—F—G A H—0
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is a split exact sequence in Mg then

Ko(9) Solw,
0 — Ko(F) —= Ko(G) xy) Ko(H) — 0

is also split exact. In particular the map
Ko(F) x Ko(H) — Ko(G), (a,b) — Ko(@)a+Ko(A)b

is a group isomorphism and Ko(F) =~ Ko(E) x Ko(F) for every E-C*-algebra F.

By Proposition 6.2.8 c), the second sequence is exact at Ko(G). From
Ko(y)oKp(A) =Ko(wold) =Ko(idy) = idKO(H)

(Corollary 6.2.3 a) and Proposition 6.2.2 d)) it follows that this sequence is (split) exact
at Ko(H).

Let a € KerKo(¢). By Proposition 6.2.7 a), there are n € IN, P € PrF_,n, and U €
Ung GVHVHZ such that

a = [Plo— [0, P, U(¢-P)U" = cS¢P.

Put
Vi= (AW, UHNU €eUnG_, pya .

Then
VoV = (WL U") (Y- U) = 15 a2, oﬁ .V =y,V.

By Proposition 6.2.8 by, = by, there is a W € Un Fa,n+2 with ¢_W =V (¢ is an
embedding). We have

¢ (WPW") =V(¢_P)V" = (EH‘IV’%U*)U((IV’%P)U*(Z%‘IV’%U) =
= (iﬁlf/ﬁU*)(Gg(bﬁP)(iﬁlilﬁU) = Zﬁlﬁﬁ(U*(Gg(f)ﬁP)U) =
= AV, P=c%p_ P=0p_ c"P.
Since ¢_, is injective (Proposition 6.2.8 a)),
P~gWPW* =6t P, a=0

and Ky (@) is injective.
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The last assertion follows since

Fo
0—F—F

=[%
]
|
o

is a split exact sequence. [

COROLLARY 6.2.10 Let F,G be E-C*-algebras.

a) If we put
u:F—FxG, x+—(x,0), m:FXG—F, (x,y)—x,
L:G—FxG, y—(0,y), m:FXxG—F, (x,y)—y,

then the sequences

Ko(n) ol
0 — Ko(F) —>= Ko(F X G) ko) Ko(G) — 0,

Ko(mp)
Ko (1 _ 2o\
0(12) llﬂ)

0—)K0(G) Ko(FXG) Ko K()(F) —0

are split exact.

b) The map
Ko(F) X Ko(G) — Ko(F x G), (a,b) — Ko(11)a+ Ko(12)b

is a group isomorphism (Product Theorem for Kj).

a) is easy to see.

b) follows from a) and Proposition 6.2.9. [ |

THEOREM 6.2.11 (Homotopy invariance of K;)

a) If o,y : F — G are homotopic morphisms in Mg, then Ko(¢) = Ko(Y).

b) IfF N G, G Y Fisa homotopy in Mg then

Ko (@) o Ko(y) = idkG) Ko(y) o Ko(9) = idy(r) -
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¢) If F and G are homotopic E-C*-algebras then Ko(F) and Ko(G) are isomorphic.
d) If F is an E-C*-algebra such that idr is homotopic to
Op:F—F, x—0
then F is homotopic to {0}.

e) If the E-C*-algebra F is homotopic to {0} then Ko(F) = {0}.

a) Let
¢s: F — G, s€1[0,1]

be a pointwise continuous path of morphisms in 9t such that ¢ = ¢, ¢; = y. Then

¢ : F — G, s€[0,1]
is a pointwise continuous path of morphisms in €z with o = ¢, ¢; = W and for every
n € 1IN,

v

() sn s (F)sn — (G) s,y s€[0,1]

is a pointwise continuous path in €z with (¢y)_., = (¢)_, and (¢;)_, = (¥)_,. For
every P € Pri_,,,
[0,1] — Pr(G) ., s+ (¢s)snP

is continuous so (by [4] Proposition 2.2.7)
Ko(@)[Plo = [¢Plo = [y Plo = Ko()[Plo
(Proposition 6.2.2 ¢)). By Proposition 6.2.4, Ko(¢) = Ko(y).
b) follows from a), Corollary 6.2.3 a), and Proposition 6.2.2 d).
c) follows from b).

d)If weput ¢ : F — {0} and y : {0} — F then y o ¢ = Op is homotopic to idr and
@ o y is homotopic to id{, so F is homotopic to {0}.

e) follows from c). [ |

We show now that Kj is continuous with respect to inductive limits.
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THEOREM 6.2.12 (Continuity of Ko) Let {(F)icr, (¢i)i jer} be an inductive system in
Me and let {F, (¢;)ic1 } be its inductive limit in Mg . By Corollary 6.2.3 a),

{(Ko(F))ier, (Ko(@i)))ijer}

is an inductive system in the category of additive groups. Let {4, (W;)ic1} be its limit in
this category and let y : 9 — Ko(F) be the group homomorphism such that y o y; =
Ko(@;) for every i € I. Then y is a group isomorphism.

{(F)ier, (@ij)ijer} is an inductive system in €z and by [2] Proposition 1.2.9 b),
{F, (¢;)ic1} may be identified with its inductive limit in ¢z . By[2] Proposition 2.3.5, for
every n € IN, {((F)=n)iers (¢)=n)ijer} is an inductive system in €g and

{(F_n, ((¢;)—n)icr} may be identified with its inductive limit in € .
Step 1 y is surjective

Let Q € Pr(I:“)_m. By [5] L.2.2, there are i € I and P € Pr(I:"i)_m such that
(®)—=nP—QJ < 1, so by [4] Proposition 2.2.4, (¢;)—,P ~¢ Q. By Proposition 6.2.2
b),c)

wVi[Plo = Ko(i)[Plo = Ko(;)[Plo = [(@)~nPlo = [Clo -

Since

PrE., = U Pr(F)_,,
nclN

V is surjective.
Step 2 v is injective

Let a € ¢ with ya = 0. Since &4 = J;c;Im y;, there is an i € I and an a; € Ko(F;) with
a = Yia;. There are n € IN and P,Q € Pr(F;)_,, such that
ai = [Plo—[Qlo
(by Proposition 6.1.5 c)). By Proposition 6.2.2 ¢),

0= ya = yya= Ko(¢;)a = Ko(¢:)[Plo— Ko(¢:)[Qlo =
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=[(¢:)=nPlo—[(¢:)=nQlo -

v

By Corollary 6.1.6 a=b, there is an R € Pr(F})_, such that
PR=QR =0, P+R~oO+R

and we get
a= [Plo+[R]o—[Qlo— [Rlo = [P+R]o— [0 +R]o=0. |

6.3 Stability of K

The stability of Ky holds only under strong supplementary hypotheses. We present
below such possible hypotheses, which we fix for this section. We shell give only a
sketch of the proof.

Let S be a finite group, ¥ : Zo X Z, — S an injective group homomorphism,
a:=o(1,0), b:=w(0,1), c:=0(l1,1),
and g a Schur E-function for S such that
g(a,b) = g(a,c) = g(b,c) = —g(b,a) = ¢ .
We put for every n € IN,
Ti=5"={teSN|meNm>n=t,=1},

T:= U Tn:{teS]N| {n €N, 1, # 1}is finite } ,
nelN

fiTxT—E, (s,;6)— []8(sutn),
nelN

s if m=n

g:]N—>S, m—
1 if m#n

for every s € S, and

1 . .
cn::E(vngv{), Ay:=C'Cy,  B,:=CC:.
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Then f is a Schur E-function for T and the following hold for all s, € S and n € IN:

F5,6) = gls,1),
%1:#@@:@@7
seTl, 1 = stVg = Vngfv
M:;ﬁ+@mﬁﬂ, &z%ﬁ*@ﬁ”ﬂa
An+By=V{ =1g,

so the assumptions of Axiom 5.0.3 are fulfilled.

Remark. 1If yx is bijective and E = U then the corresponding projective K-theory

coincides with the usual K-theory.

PROPOSITION 6.3.1 Let F be an full E-C*-algebra and m,n € IN. We define
o= am’n : (Fm)n — F;ﬂ+n7

B =B : Foven — (Fa)n,
by
(aX) (5.) 1= (X)s, ((BY)1)s =Y
for every X € (Fy)n, Y € Fyyn, and (s,t) € S™ x §" = S, where the identification is

given by the bijective map

S X 8" — ST (5,8) > (S, Smotly sty -

a) o and B are E-C*-isomorphisms and o = B,
b) 0tAn = Amin.

c) The diagram

m,n—1

(04
(Fm)nfl —_— Fm+n71

prll:m J{ J{prlr;rn

(Fm)n ?) Foin

%

is commutative.
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It is obvious that o and 3 are E-linear and oo § = idp,, ., B o & = idf,,),. Thus o and
B are bijective and @ = B!,

For X,Y € (F,), and (s,t) € S™ x §", by [2] Theorem 2.1.9 ¢),g),

= ) F), s v ) (@X) ) (@Y ) 11y =

(u,y)esSmxsn
= Z f(uvuils)f(wvilt)(XV)M(Yv*lt)lfls =
(u,v)eSm < S"
= Z FOov (XY, 1) =
vest

= ( Y vlt)Xvau)s = ((XY)1)s = (a(XY)) s

ves”n
so o is a C*-homomorphism and the assertion follows.

b) follows from the definition of A, and A,,,+,.

¢) follows from b). |

PROPOSITION 6.3.2 Let F -2 G be a morphism in € and m,n € IN. With the
notation of Proposition 6.3.1 the diagram

af
(En)n L Fm+n

(@m)n l J{ Prtn

(Gm)n S Gm+n

G
%

is commutative.

For X € (F,), and (s,7) € " x §" = ™",
((pernarI;,nX)(s,t) = (P(O‘rinx)(m) =0(X)s =
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= (@nXe)s = (((@m)nX)1)s = (arg,n((l’m)nx)(s,t)
SO
Pm+n © O‘g,n = anGl,n o (@m)n - u
THEOREM 6.3.3 (Stability for Ko) If F —> G is a morphism in Mg andn € N then
Ko(F,) ~ Ko(F), Ko(G,) ~ Ko(G), Ko(@n) ~ Ko(@) . [ |

Remark. If (F,(pf)nen) and (Ge, (p¥)nen) denote the inductive limits in 9tg of

the corresponding inductive systems ((F,)qeN, (p},ll:;m)”_’mg]]\]) and ((Gy)nen, (pgm)n,mgm)
then, with obvious notation,

Ko(Fo) * Ko(F),  Ko(Gw) ®Ko(G),  Ko(¢w)~Ko(9) -
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7.1 Definition of K|

PROPOSITION 7.1.1 IfF is a full E-C*-algebra and n € IN then
' .UnF,_| —UnF,, U+~——AU-+B,
is an injective group homomorphism with
tF(Ung, , Fi1) CUng, F, .

ForU,V eUnF, we put U ~| V ifUV* U"V € Un E,. ~ is an equivalence relation

and ~y, implies ~1.

ForU,V eUnF,_,
T'U* =AU+ B, = (ZU)",
(#FU)(7F'V) = (AU 4 By)(AV +By) = AUV 4B, = T4 (UV),
(G U)(E3 V) = (3 U) (5 U) = Ay + By = 15,

i.e. T is well-defined and it is a group homomorphism. If XU = 1f, then

AU +B,=TU =1, =1g =A, +B,, AU =A,,
so by Proposition 6.1.1 ¢), U = 1g,_, = 1g and f,f is injective.
The other assertions are obvious. [ |

DEFINITION 7.1.2 Let F be a full E-C*-algebra. We put for all m,n € IN, m < n,

TF

=1L ot jo-ofh  :UnFy—UnF,.

9

Then {(Un F))neN, (Tum)mneN} is an inductive system of groups with injective maps.
We denote by {unF, (t!'),eN} its inductive limit. T is injective for every n € IN, so
(tF' (Un F,))nen is an increasing sequence of subgroups of unF, the union of which is
unF. We put for everyn € NandU € Un F,,

UnF._,:=1t(UnF,), U_:=U_,:=Uf, =1U,

n

Iy =18 =1lg (=1l1g).

(tF (Ung, F,))ne is an increasing sequence of subgroups of unF; we denote by ung F

their union.
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We often identify Un F,, with Un F,,.

PROPOSITION 7.1.3 Form,n € IN, m <n, and U € Un F,,,

r}:mU:< f[ Ai>U+<1E— f[ Al-) .

i=m+1 i=m+1

We prove this identity by induction with respect to n. The identity holds for n:=m+ 1.
Assume it holds for n — 1 > m. Then

F =F _F F
17n,mU =T Tn—l,mU = AnTn—l,mU +B, =

n—1 n—1
=An [T A |u+|te— J] A) | +B.=
i=m+1 i=m+1

n n
=\ [T Aa|u+|1e— ][] A - [ |
i=m+1 i=m+1

PROPOSITION 7.1.4 Let F be a full E-C*algebra.

a) If U,V € Un F,_1 for some n € IN then
#(UV) i B (VU), FUVU) i T (V).
b) ungF is a normal subgroup of un F and un F [ung F is commutative.
c) ForallU,V €unF,
UV cungF <= U"V cungF .

We put U ~ V ifUV* € ung F. ~ is an equivalence relation.

a) By Proposition 6.2.5 a),b),
' (UV) =AUV + B, = (AU +B,)(A,V +B,) ~
~n (AU +By)(An+B,V) =AU + B,V ~;, A,V + B,U ~, ’E,Il:(VU) .
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It follows
T (UVU) i T UUV) = (V).
b) ung F is obviously a subgroup of un F. The other assertions follow from a).
c)Letg:un F — un F /ung F be the quotient map. If UV* € ung F then by b),
q(UV") = q(U)q(V") = q(V*)q(U) = q(V'U),
V*U €unpF, U*V =(V'U)* €ungF . |
DEFINITION 7.1.5 We denote for every E-C*-algebra F by K, (F) the additive group
obtained from the commutative group unF /ung F (Proposition 7.1.4 b)) by replacing the

multiplication with the addition @, by this the neutral element (which corresponds to 1g)

is denoted by 0. For every U € unF we denote by [U]; its equivalence class in Ki (F).

Remark. Let F be a full E-C*-algebra. By Proposition 4.1.2 d), F is isomorphic to
E x F, so in this case we may define K using F instead of F (as we did for Kj).

PROPOSITION 7.1.6 Let F —* G be a morphism in M.

a) Form,n € IN, m < n, the diagram

. y
UnkF, —— Unk,

| Lo

G
Tiom

is commutative. Thus there is a unique group homomorphism
¢ cunF — unG

such that
y PG
(p<— © Tn = Tn © (Pn

for everyn € IN.

Science Publishing Group 195



Chapter 7 The Functor K;
b) o_(ung F) C ung G; if @ is surjective then Q. (ung F) =ungG.
¢) There is a unique group homomorphism
Ki(9): K (F) — K (G)

such that
Ki(9)[U]i = [¢-U]x

for every U € unF.
d) Kl (ldF) == idKl(F)'

e) Ki({0}) = {0}.

a) It is sufficient to prove the assertion forn =m+1. ForU € Un E,,
7 @mU = An(GnU) + By = Gu(AnU + B,) = §u1),,U -
b) Since ¢,(Ung, F,) C Ung, G, for every n € IN, it follows @, (ung F) C ung G. If

¢ is surjective then by [4] Lemma 2.1.7 (iii), we may replace the above inclusion relation
by =.

c¢) follows from a) and b).
d) is obvious.

e) follows from un E = ung E. [ |

DEFINITION 7.1.7 An E-C*-algebra F is called K-null if
Ko(F)=K;(F)=0.

Let F % Gbea morphism in Mg . We say that @ is K-null if
Ko(9) =Ki(9)=0.

/ "
We say that ¢ factorizes through null if there are morphisms F L HS Gin Mg such
that = ¢" o ¢’ and His K-null.
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PROPOSITION 7.1.8

a) If F 2.6V Hare morphisms in YNy then

. " y " A~
Ve o =(Yo), = (‘I’O(P)e , Ki(y)oKi(e)=Ki(yoo).

b) If p =0then K, (¢) =0.

c) (Homotopy invariance of Ky) If ¢,y : F — G are homotopic morphisms in Mg
then

K (o) =Ki(y).
d) (Homotopy invariance of K;) If F 26V Fisa homotopy in Mg then
Ki (o) : K| (F) — Ki(G), Ki(v):K((G) — K, (F)
are isomorphisms and K1 () = K1 (@)~
e) Ifthe E-C*-algebra F is homotopic to {0} then F is K-null.

f) If a morphism in Mg factorizes through null then it is K-null.

a) Since

for every n € IN we get

For U € unF, by Proposition 7.1.6 c),

Ki(y)Ki(@)[Ul1 = Ki(y¥)[@- U1 = [ @ U]; =

= [(Yod) U] = (ﬂ) w] — Ki(yo@) U],
1

so K1 (y) oK () =Ki(yoo).

b) If we put ¥ : F — {0}, 1 : {0} — G then ¢ = 109 and by a) and Proposition
7.1.6¢), K1 () = 0.
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c) Let
os: F — G, s€[0,1]

be a pointwise continuous path of morphisms in 9z with ¢o = ¢ and ¢; = y. Letn €
IN. Then

(és)n:ﬁ‘n—>én> SE[OJ}

is a pointwise continuous path of E-C*-homomorphisms with (), = @, and (¢1), = V.

For every U € Un F;,, the map
9:00,1] —UnG,, s+ (§).U

is continuous and ¥ (0) = ¢,U, (1) = WU, i.e. $,U and W, U are homotopic in Un G,,.
It follows

Ki(9)[7 Ul = Ki (w)[7L U]y ,

which implies K; (@) = K; ().
d) follows from c) and Proposition 7.1.6 d).

e) By d) and Proposition 7.1.6 ¢), K| (F) = {0}. By the Homotopy invariance of Ky
(Theorem 6.2.11 e)), F is K-null.

f) follows immediately from a), e), and Corollary 6.2.3 a). [ |

PROPOSITION 7.1.9 If
% v
0—F—G—H—0
is an exact sequence in Mg then
K (@) Ki(y)

Kl(F) — K](G) — Kl(H)

is also exact.

Leta € KerK;(y) and let U € unG with a = [U];. By Proposition 7.1.6 c),
0=K(y)a=[y_Ul, V.U €cungH .
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By Proposition 7.1.6 b), there is a V € ung G with W,V = . U. We put W := UV*. By
Proposition 7.1.4 ¢), [W]; = a and so

VW =(WU)(PV) =1g.
W has the form
w=Y (&,X)®idk)VC

teTy,

for some n € IN, where (o, X;) € E x G for every ¢ € T,,. We get

e =WW = Y (0. wX,) @idg )V

teTy,

and so by [2] Theorem 2.1.9 a), yX;, =0 for every ¢t € T,,. For every t € T,, let Y; € F with
¢Y; = X; and put
W'=Y (oY) ®idg)V/] .

t€Ty
Since ¢ : F —» G is an embedding, W' € Un F_,, and by Proposition 7.1.6 ¢),
Ki(@)Wh=[@gW]h=W=a.
Thus Ker K| (y) C ImK;(@).
Let now U € unF._. By Proposition 7.1.8 a),b),
Ki(y)Ki(9)[U]1 = Ki(yo)[U]1 = Ki(0)[U]1 =0

so ImK; (@) C KerK;(y). [
PROPOSITION 7.1.10 The following are equivalent for every full E-C*-algebra F.

a) Ki(F) = {0}.

b) For everyn € IN and U € Un F, there is an m € IN, m > n, with ’L'ni;nU ~yp lg in
Un F,,.

a = b Since

(1g,U) €UnE, xUnF,=Un (E,x F,) =Un (E X F),,
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it follows from Proposition 4.1.2 d), (1g,U — 1g) € Un F,. By a), there is an m € IN,
m > n, with

Up:= (15, U —15) = Th ,(15,U — 1) € Ung,, Fy .
Thus there is a continuous map
[0,1] — UnFE,, s+ U
with Uy € Un E,, (C Un F,,). We put
Ul :=Uy(cLUy)* (e Un Ey,)
for every s € [0, 1]. Then the map
[0,1] — UnkE,, s+ U
is continuous and Uj = Uy, U{ = 1g. Let
¢:F—ExF, (a,x)— (ot,x+ )
be the E-C*-isomorphism of Proposition 4.1.2 d). Then
U":[0,1] — UnE,xUnk,, s+ @,U,
is continuous and
Uy = ouUp=(1£,7,,U), U =@uU{ = (g, 1) -
Thus ’L’,i,nU ~plpinUnF,.

b= a Let a € Ki(F). There are n € IN and U € Un F, with a = [U];. Since
U(cfU)* ~; U, we may assume U = U(c}U)*, i.e. 6I'U = 1g. Thus there is a unique
X € F, with tf X =U — 1g. Then

U :=X+1gcUnF,.
By b), there is an m € IN, m > n, with 5, , U’ ~}, 1g. By Proposition 4.1.2 d),
U= (IE7X) = (lEvU/_ 1E)7 Trﬁ,nU = (1E7Tn€,nU/_ IE) ~h (lEaO)v

ie.a=[U]; =0. |
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COROLLARY 7.1.11 IfF is a finite-dimensional full E-C*-algebra then K| (F) = {0}.

For every n € IN, F,, is finite-dimensional and so there is a finite family (k;);c; in IN such
that F, = []Cy, x,. Thus every U € Un F, is homotopic to 1g in Un F,. By Proposition
i€l

7.1.10 b = a, K, (F) = {0}. |

COROLLARY 7.1.12 [f the spectrum of E is totally disconnected (this happens e.g. if
E is a W*-algebra ([1] Corollary 4.4.1.10)) then Un E,, = Ung E, for every n € IN and so
K (E) ={0}.

Let Q be the spectrum of E and let U € Un E,. U has the form

U=Y (U®idg)V,

teTy,

with U; € E for every t € T,,. We put

U(w):= Y (Ul(w)®idk)V;

tely

for every @ € Q and denote by 6(U(w)) its spectrum, which is finite. Let @y € Q and
let 8y € [0,27] such that ¢'% ¢ o(U(ay)). By [1] Corollary 2.2.5.2, there is o clopen
neighborhood Q of @y such that ¢’% does not belong to the spectrum of U(w) for all
o € Q. Assume for a moment Qg = Q and put for every s € [0, 1],

hy T\ {0} —T, &V —s e, Wy := hy(U),
where ¥ €]y — 27, %[. Then
[Ovl]_>U”Ena s—> W

is a continuous path in Un E,, ([1] Corollaries 4.1.2.13 and 4.1.3.5) with W; = U and
Wo=1g. ThusU € Uny E,,.

Since Q is the union of a finite family of pairwise disjoint clopen sets of the above form
Qo, U € Ung E,.

By Proposition 7.1.10 b = a, K; (E) = {0}. [
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7.2 The Index Map

Throughout this section
¢ v
0—F—G—H—0

denotes an exact sequence in Mg and n € IN.

PROPOSITION 7.2.1 LetU € Un H,_;.

a) ThereareV € Un én and P € PrE, such that

V.V =AU +B,U", P =VA,V* .

b) IfW € Un G, and Q € PrF, such that
'-Iv/nW =AU +BnU*7 (/v)nQ = WAnW*
then G{Q =A, and P ~q Q.
¢) LetUy € UnH,_1, Vo € Un G, and Py € PrF;, with
Up~1U, li/erO :AnUO+BnUg7 ¢11P0 :VOAnV(;F .
Then Py ~q P.
d) IfU € Ung, , Hy— then P~ A,.
a) By Proposition 6.2.5 d), A,U + B,U* € Unyg H, so by [4] Lemma 2.1.7 (i) (and [2]
Theorem 2.1.9 a)), there isa V € Ung G, with v,V =AU + B,U*. We have
(VA V*) = (AyU + B,U")A, (AU +B,U) = Ay,
H *\ _ H _ 0y *
G, Yn(VAV™) = 0,/ Ay = Ay = W (VA,V™),
so by Proposition 6.2.8 b, = b1, there is a P € Pr F, with @P=VA,V*.
b) Since nf = 7t o Yo @, we have

' Q =m0, 3.0 = ml (WA, W) =
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= 1, (AU + ByU")An(AU* +B,U)) = My Ay = Ay,
o0 =A,. Since
U, (WV*) = (A,U+B,U") (AU +B,U)=A,+B, =1 = G,f]llvln(WV*),
by Proposition 6.2.8 b, = by, thereisaZ € Un F, with @uZ =WV*. Then
G.(ZPZ*) = (WVH)(VA,V) (VW) = WA, W* = ¢,0,
ZPZ* = Q, P~y Q.
¢) By Proposition 7.1.4 ¢), U*Uy,UU; € Ung,_, H,_ so by [4] Lemma 2.1.7 (iii),
there are X,Y € Un (V7,,,1 such that
V1 X = Uy, V1Y =UUj .
We put
Z:=V(A,X +B,Y).
By Proposition 6.2.5 ¢), Z € Un G,,. We have
V,Z = (AyU + B, U") (A, U*Uy + B,UU; ) = AUy + B, U
Vi (ZA,Z*) = (A Uo + B, U An(AUS + B, Ug) = A, = o, (ZA,Z") .
By Proposition 6.2.8 b, = by, thereis a Q € PrF, with 0,0 =ZA,Z*. By b), O ~¢ R.
From
0,0=7A,2" =V (A, X +B,Y)A,(A, X" +B,Y")V* =VA,V* = ¢,P
it follows Py ~9 Q = P (by [2] Theorem 2.1.9 a)).

d) By c), we may take U = 1g. Further we may take W = 1g and Q = A, in b), so
P~A,. [ |

PROPOSITION 7.2.2 Foreveryi€ {1,2} letU; € Un H, 1, V.eUnG,, and P, € PrF,
such that
v,V =AU+ B,U;, PP = VAV .
Put
X :=A 1140 +Cp 1 Co+Coi1 Gy + Byt 1 By, U =AU +B,U,

V.= X(A,,+1V1 +Bn+1V2)X, P .= X(A,H_]Pl +B,,+1P2)X R
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a) X €eUngEyp1, UeUnH,, VeUnGy, PePri,,.

b) lTln-s—lv:An+1U"’Bn-ﬁ—IU*, ¢n+1P:VAn+1V*o

a) We have
X? =Api1An+Ani 1By + Buy1Ay+ Bup 1By =1 .
Since X is selfadjoint it follows X € Ung E,+1 ([4] Lemma 2.1.3 (ii)) and so P € PrF",,H.
By Proposition 6.2.5¢), U € Un H,andV € Un én+1.

b) We have
XAn+1X = (An+1An + Cn+1CZ )X = An+1An +Bn+1An =A,,

XBy1X = (Cyy 1Co+Bny1By)X = Ay 1By +Byy 1B, = By,
XA X =A,11, XBy,X =By+1,
XAp1AX = ApiAy, XAp1BuX = Boi1A,,
XBn1AnX = Apy1By, XBp1BuX = By11By,
Vi1V = X(Aps1(AnU1 + BoUY) + Bug1 (AUz + ByU5 ) )X =
= An1AnU1 + B 1 AU + A1 BoUs + By 1 ByUy = Ay iU + B U™
VA1V =X (A1 Vi + Bust V2)XAu it X (Ap 1 Vi + Bt Vo )X =
=X(An1V1 + Byt 1 V2)An(Ana Vi + By V5)X =
= X (A 1V1iApAn 11 Vi + By 1 VoA By V5 )X =
=X(Ant1VIA V] + Bui1V2A V5 )X =
= X(Ans1QnP1 +Br1GuP2)X =
= Qni1 (X (Ant1PL + By 1 P2)X) = Ppyi P u

COROLLARY 7.2.3 There is a unique group homomorphism, called the index map,
01 : K\ (H) — Ko(F)

such that
81U = [Plo—[o,Plo

for every U € unH, where P satisfies the conditions of Proposition 7.2.1 a).
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By Proposition 7.2.1 a),b), the map
Vo :UnH, | — Ko(F), U+ [P]o—[c!Plo

is well-defined for every n € IN, where P is associated to U as in Proposition 7.2.1 a).
By Proposition 7.2.1 ¢), v,U = v,Uy for all U,Uy € Un H,_, with U ~; Uy. With the

notation of Proposition 7.2.2,
Va1 (AUt +ByUsz) = Va1 U = [Plo = [0, Plo =
= [Aps1PL 4 Bus1Pr)o — [0 1 (Ans1 P+ Bu 1 P2)]o =
= [PJo+ [PJo — [05 Pilo— [0 PaJo = VaUi + VuUs .
Thus by Proposition 7.2.1 d) (and Proposition 7.2.2), for U € Un H,_1,

Vot (FHU) = v 1 (AU 4By) = VoU 4 v, 1 = v,U .

Hence the map
viunH — Ko(F), Uwr—v,U

is well-defined, where U € Un H,_, for some n € IN. By Proposition 7.2.1 d), again, v
induces a map 6; : K;(H) — Ky (F'), which is additive by the above considerations. The
uniqueness follows from the fact that the map [-]; : un H — K, (H) is surjective. |

PROPOSITION 7.2.4 Let
0o—F%e L H —0

be an exact sequence in Mg and 0| its associated index map. If the diagram in Mg

0 F 2.6 Y. H 0
A s
0 F' G H' 0
(p/ w/

is commutative then the diagram

Ki(H) —2 s Ko(F)

Ki(p) | | #on

Kl (H/) —_— Ko(F/)
8

is also commutative.
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LetU e UnH,_,,V € UnG,, and P € PrE, with
W,V =AU +B,U*, PP =VA,V* .

Put
V=&,V eUnG,, P :=},P€PrF',.

Then
llv//nvl = li}/n&nv = Bnllv,nv = AanflU +Ban71U* )

(I;'nP/ — (I;/,,Qv’np = & PP = &, (VA,V*) = VAV

By Corollary 7.2.3 for &{, Proposition 7.1.6 c), and Proposition 6.2.2 ¢),

81K1(B)[U)1 = 8{[Ba-1U)1 = [Plo — [0} P'lo = [#uPlo — [0} #uPlo =

= [%Plo — [#a0 Plo = Ko(7)([Plo — [0, Plo) = Ko()81[U]; - u
PROPOSITION 7.2.5

a) 61 OKl(l[/) =0.

b) Ko(@)o 8 =0.

a)LetU € Un G,_; and put
V:=1U =AU +B, €UnG,.

Then
lvllnv - An(lvljnflU) +Bn 3

(‘/V/nV)An(‘i/nV)* = (An(‘lvfnflU) JFBn)An(An(‘pnflU)* +Bn) =A,,

so (by Proposition 7.1.6 c))

8K (W)U = 81 [¥-1U)1 = [An)o— o) AnJo =0.

b)LetU € UnH,_;,V € Un G,, and P € PrF, with

V.V =AU + B, U, P =VAV* .
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By Proposition 6.2.2 ¢) (since ¢ o 6F = %0 ),
Ko(9)81[U]1 = Ko(9)([Plo — [0, Plo) =

= [(/V)HP}O - [(pnG;fP}O = [qv)nP}O - [Gr?‘bnp]o =
= [VAnV*]O - [(GrzGV)An(GnGV)*]O = [AH]O - [AH]O =0. u

PROPOSITION 7.2.6 LetU € UnH,_,. There are V € é,, and P,Q € Pr F, such that
V*V € Pr Gy, v,V =AU,
GuP =1 V"V, PQ =1 —-VV", 61[U]1 = [Plo—[Qlo -
By Proposition 6.2.5 d), A,U + B,U* € Ung H,. Since W, is surjective, by [4] Lemma
2.1.7 (i), there is a Vg € Un G, with W,Vo = A,U 4+ B,U*. Put V :=VpA, € G,,. Then
V'V =AViVoA, = A, € PrG,
and
v,V = (V,Vo)A, = (A, U+ B, UMA, =A,U .
We have
Uu(lg—=V*'V)=1g—A, =B, = Y,(1g —VV™).
By Proposition 6.2.8 by = by, there are P,Q € Pr F,, with
O P=1g—V*V, ¢,0=1g—-VV*.

Put
W= A1 VACopt(1g = V*V)+Chp /(1 —VV*) +By1V* € Guy1

VA ::An + (Cn+1 +C;:+1)B” S En+] .

Since VV*V =V, V*VV* =V* and
W*=A,V* +C2+1(1E —VV)+Cp1(1g—=VV*)+ B, 11V,
we get

WW* = Ayl VV* + By (1 = V*V) +Ap 1 (1g —=VV*) + B, | V*V =
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=Ap1+Bup1 =1,
W*W = Ap1VV 4 Api1 (1 = VV) + Byt (1 — VV*) + By VV* =
=Ap1+Bur1=1g.

By Proposition 6.2.5 a),
Z*=A,+B,=1g

soWeUn Gn+1, ZeUnE,+1,and ZW € Un én+1. By the above and Proposition 6.2.5

a)’
lV//,H_]W =Ap1 AU+ (Cn+1 +CZ+1)Bn +Bn+1AnU* )

Vi1 (ZW) = Z§ W =
= (A + (Cor1 +Coy1)Bn) (At 1A U + (Coy1 + Gy )Br + B 1A U™ ) =
=An 1A U + By 1AyUS + By = Ay 1AU + B 1 AU + (Apy 1 +Buy1)Br =
=Ap1(AU +By) + By 1 (AU +By) .

We put
R:=Aui1(lg — Q)+ By PEPrFy .

Using again VV*V =V and V*VV* = V*,
Gui1R=A,11VV* +B, (1 =V'V),

WA 1 =Ap 1 V+Cop1 (1 -VTV),
WA W =A, 1 VV*+ B (1 —V'V) = ¢, 1R,
IWA A\ W*Z =Z(@p1R)Z = ¢p1(ZRZ) .

Since ZRZ ~og R and U ~| A,U + By, by the definition of J,
81[U]1 = 81[AU +By]1 = [Rlo— [0, R]o -
Since 7 o Yo ¢ = ", by the above,
al' P = n,¢.P = nty, (1, —v*V) =nllB, =B, =7l Q.
Thus by Proposition 6.1.3 (and Proposition 7.2.1 b)),

G{+1R =Aui1(1g = By) + By 1By ~0 Ay 1By + A 1Ay =
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=Ant1 =PLlE ~o 1

and we get
[Rlo = [1£ — Qo+ [Plo = [1£]o+ [Plo — [Qlo,

01[U]1 = [1g]o+[Plo — [Qlo — [1£]o = [Plo — [Qlo -

PROPOSITION 7.2.7 Ker & C Im K, ().

Let a € Ker 8, and let U € Un H,_; with a = [U];. By Proposition 7.2.6, there are

V € G, and P,Q € Pr F, such that V*V € Pr G,, W,V = A,U,

QP =1 =V*V, GO =1 —VV", 81[U]1 =[Plo—1[Qlo -

Then [P]o = [Q]o. By Corollary 6.1.6 a=-c, there is anm € IN, m >n+ 1, and an X € F,

such that

m m
= H Ai | P+ | 1g— H Ai
i=n+1 i=n+l

m m
=\ JTA)o+{1e— ] 4 -
i=n+1 i=n+1
Put W := ¢,,X. Then

W'W = ¢, (X*X) = (HA) lEV*V)+<lE'ﬁA,»>

i=n+1

=1E—<ﬁ A,»> Vv,
i=n+1
ww —1E—<H A)VV*

i=n+1

(ﬁA,)VV*WW*z(HA)V VW*W =0,

i=n+1
[T A |)vw=]| [] A |vw* =0,
i=n+1 i=n+1

(o) (L)

Science Publishing Group

209



Chapter 7 The Functor K;

m
= ( I1 A,-) VVAWW =1g,

i=n+1

(1)r-+) (7))

m
= ( I1 A,-) VV 4+ WW* =1,

i=n+1

m
( I1 Ai>V+WeUnGm

i=n+1
From

Vi (W*W) —1E<HA>1//mVV
i=n+1
:1E—<HA> Ap = Pn(WW¥),

i=n+1

since YW = ¥, $, X € E,, it follows

i=n

VW + (HA,-) cUnE,.

By the above,

(ﬁA,-) Uy,W* = ( 11 A) Y (W) =
i=n i=n+1
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By Proposition 7.1.3 and Proposition 7.1.6 c),

ElmKl(l[/). |
1

=Ki(y)

<f’1 >W

i=n+1

PROPOSITION 7.2.8 Ker Ko() C Im §,.

Let a € Ker Ko(¢). By Proposition 6.2.4, there is a P € Pr F, with
a=[Plo—[cL,Ply.
By Proposition 6.2.2 c),
0=Ko(@)a=[¢-Plo—[p-0"Plo.

Let n € IN such that P € Pr F,,. Then [¢_,Plo = [¢_,0%,,Plo. By Corollary 6.1.6
a=c, there is an m € IN, m > n+ 1, such that

(p—mP'i‘ (Bm)—> ~0 ¢—>n6inP+ (Bm)—> .

Put
Q:=P+(B,),cPrF,,.

Then
a = [Qo—[0%,Qlo, ¢smQ ~0 Pmo”,,0=0",0.
By Proposition 6.2.6, there are k e N, k > m+2,and W € Un Gv_>k with

W(¢mQW*=0",,0.

It follows
(65 QW =W (GonQ)W'W = W (¢ 0).

(lpakw)(cikQ) = (llyakw)(llv’ak(lv)akg) = l/V’—>l<(qu)—>kQ) =
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= ¥or((65, QW) = (65, 0) (Vi W) -

Put
U:= (l[vl_>kW)(15 - Gf)kQ) +Gf>kQ S I‘VI_”( .
Then
UU* =U"U = I, UcUnH_;.
Put
Vii= (Aen1) (1 — 65, Q)W + (Bt ) 05,0 € Giy -
Then
Vi = (Aes1) W (1g — 65,0) + (Bey1) 05,0,
ViVi = (A1) (1 — 654Q) + (Bis1) 65,0 € PrEgyy
ViVi = (A1) W (1g — 05 QW + (Biyr) 05,0 =
= (Ag1)=(1g =W* (05, Q)W) + (Byy1)—07,0.-
Put

Z:=(1g—05,0) + ((Ces1)= + (Ci11)=)05 10 € By -

By Proposition 6.2.5 a),
22:(1E_GikQ)+GikQ=157 ZeUnEy,,

ZVi = (A1) (1g — 05, QW + (G ) 07,0,
Vi=2ZViZ= (A1) (1g — b, 0W (1 — 6%,,0)+
+(Cis) - (1 — 05, 0)Wl, 0+ (Ary1) 05,0 € G,
¥V = (Ar) = (1 — 05 Q)W W + (A1) 05,0 = (Ak1) U,
VV* = ZV\ViZ € Pr Egs1, V'V = ZViViZ,
lg—VV* =Z(1g —V\V{)Z =
= Z((Ak41) 05,0+ (Bey1) (1 — 65,0))Z,
lg—V*V =Z(lg —ViV)Z =
= Z((As1) =W (65 OW + (Biy1) - (12 — 65,,0))Z =

= Z((Ak1) > P 1Q+ (Bi1)— (1g — 65,,0))Z,
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¢k 11(Z((Ak41) - 0+ (Big1) - (12 — 05,0))2) =
= Z((Aks1) PO+ (Biy1) - (1e — 65,0))Z = 1g = V'V,
O i1 (Z((Aks1) = 65,0+ (Biit) = (1 — 65,,0))2)) = 1g = VV*.
By Proposition 7.2.6,
81[UN1 = [Z((Ak1) - Q@+ (Biy1) - (12 — 65,,0))Z)o—

—[Z((Ak1) =05, Q+ (Bis1) = (1g — 65,)0)Z)o = [Qlo — [0/, 0o =a..
Thus a € Im 0.

THEOREM 7.2.9 The sequence

dy

) Y K (H) 25 Ko(F) 28 Ko (G) Y

K(F) "3 k(G

is exact.

The exactness was proved: for K;(G) in Proposition 7.1.9, for K; (H) in Proposition
7.2.7 and Proposition 7.2.5 a), for Ko(F) in Proposition 7.2.8 and Proposition 7.2.5 b),

and for Ko(G) in Proposition 6.2.8 c).

7.3 K1 (F) ~ K()(SF)

DEFINITION 7.3.1 Let F be an E-C*-algebra. We denote by CF the E-C*-algebra of
continuous maps x : [0,1] — F with x(0) = 0 and by SF its E-C*-subalgebra
{x€CF | x(1) =0} (Definition 2.1.1 or [2] Corollary 1.2.5 a),d)). Moreover we denote

by O : K| (F) — Ko(SF) the index map associated to the exact sequence
0—SF-scrdhF 0,
in Mg, where i is the inclusion map and
jr:CF —F, x+—x(1).
IfF 2 Gisa morphism in Mg then we put
So:SF — SG, x— @ox,

Cp:CF —CG, x——@ox.
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It F -2+ G - H are morphisms in Mz then S(y)oS(p) =S(yoo).
THEOREM 7.3.2 Of is a group isomorphism for every E-C*-algebra F.

CF is null-homotopic ([4] Example 4.1.5 or Proposition 2.4.1), so by the Homotopy
invariance (Theorem 6.2.11 e), Proposition 7.1.8 e)), it is K-null. By Theorem 7.2.9, the

sequence
Ki(CF) "8 K\ (F) 25 Ko (SF) ") ko (CF)
is exact, so Of is a group isomorphism. [ |

PROPOSITION 7.3.3 Let F and G be E-C*-algebras.

a) Forall (x,y) € (SF) x (SG) put
—~
() :[0,1] — FxG, s (x(s),5(s)) -

Then the map

(SF) x (SG) — S(F xG), (x,y) |—>(fx/,\y\)

is an isomorphism in Mg (Definition 1.1.2).

b) Ki(F)x K(G) =~ K| (F x G) (Product Theorem).

a) is easy to see.
b) By Theorem 7.3.2, the maps
OF x 9(;

Ki(F) x K1 (G) "% Ky (SF) x Ko (SG),  Ki(F x G) 2§ Ko(S(F x G))

are group isomorphisms. By a), Ko((SF) x (SG)) =~ Ko(S(F x G)) and by Corollary
6.2.10b), Ko((SF) x (SG)) =~ Ko(SF) x Ko(SG). Thus

K1 (F) x K{(G) = K, (F X G) . |
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73 K\ (F)~ Ko(SF)
COROLLARY 7.34 Let F 5 F', G % G' be morphisms in Mg and
OXY:FxG—F'xG, (x,y)— (¢x,yy).
Then @ X Y is a morphism in Mg and

Ki(@ x y) = Ki(@) x Ki(y)

forallie {0,1}.
The assertion follows easily from Corollary 6.2.10 b) and Proposition 7.3.3 b). [

PROPOSITION 7.3.5 (Product Theorem) Let (Fj)jc; be a finite family of

E-C*-algebras, F := [] F; (Definition 1.1.2), and for every j € J let @; : F; — F be the
JjeJ
canonical inclusion and y; : F — F; the projection. Then for every i € {0, 1},

D: in(Fj) — Ki(F), (aj)jes— Z;Ki((Pj)aj
JE JjE

is a group isomorphism and

W Ki(F) — HKi(Fj)7 ar— (Ki(y))a) jes
je

is its inverse.

® and ¥ are obviously group homomorphisms. For j,k € J, y;o @ = 0if j # k and
Vj o @; = idr;. Thus for (a;) je; € [1 Ki(F;) and k € J,
JjeJ

(WD (aj)jes)k = Ki(wi) Y Ki(@j)a; = ax
jed
i.e. Wod is the identity map of [] K;(F;). Since Y. @;oy; =idp, for a € K;(F),
jel jel
PWa = O(Ki(y))a)jes = ) Ki(9))Ki(yj)a=Ki (Z @jo ‘/’j) a=a
jeJ JjeJ

i.e. q)o\P:idK,-(F)' .
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THEOREM 7.3.6 (Continuity of K1) Let {(F)icr, (¢ij)i jer} be an inductive system in
Me and let {F, (¢;)ic1} be its limit in Mg . By Proposition 7.1.8 a),

{(K1(F))iers (Ki(@ij))ijer}

is an inductive system in the category of additive groups. Let {4, (W;)ic1} be its limit in
this category and let ¢ : 4 — K (F) be the group homomorphism such that yo y; =
K\ (@) for everyi € I. Then y is a group isomorphism.

By [4] Exercise 10.2, {SF,(S@;)ic;} is the limit in 9z of the inductive system
{(SF)ic1, (S@ij)ijer}. By Theorem 6.2.12, {Ko(SF),(Ko(S®i))ici} may be identified
with the inductive limit in the category of additive groups of the inductive system
{Ko(SF;)ier, (Ko(S@ij))i,jer} and the assertion follows from Theorem 7.3.2. |

v

. et
PROPOSITION 7.3.7 Let F be an E-C*-algebra,n€ N, U € UnF,_1,V €Un (CF ),

P
and P € Pr ( SF ), such that

JFV =AU +B,U*, ipP =VA,V* .
Then
6 [U]1 = [Plo — [0," Plo.
The assertion follows from Corollary 7.2.3 and Definition 7.3.1. [

PROPOSITION 7.3.8 If F -* G is a morphism in Mg then the diagram

K
K(F) 2% ki (6)

o | I

Ko(SF) —— Ko(SG)

Ko(So)
is commutative.
The diagram
0 SF — 5 cr 0
S% Cfpl lfp
0 SG CcG G 0
iG JG
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is commutative and the assertion follows from Proposition 7.2.4. |

Remark. By Theorem 7.3.2 and Proposition 7.3.8, the functor K| is determined by the
functor Kj.

COROLLARY 7.3.9 (Split Exact Theorem) If
¢ Y
0—F—GrH—0
is a split exact sequence in Mg then

Ki(9) faw
O—)Kl(F)ﬁ>K1(G) K1 () K1<H) —0

is also split exact. In particular the map
Ki(F)xK\(H) — Ki1(G), (a,b)— Ki(¢p)a+K;(A)b

is a group isomorphism and K, (F) ~ K (E) x K, (F).

By Theorem 7.2.9, the sequence

) K(G) )=

© ko (G) Y

Ki(F) 2% k,(G) ™ Ky (1) -2 Ko(F Ko(H)

is exact and by Proposition 7.1.8 a) and Proposition 7.1.6 d),

Ki(y)oKi(y) =Ki(yoy) = Ki(idy) = idk,(u) -

It remains only to prove that K (@) is injective.

It is easy to see that

Se ¥
O—>SF—>SG{slSH—>0

is split exact. By Proposition 6.2.9, Ko(S¢) is injective and by Proposition 7.3.8, the
diagram

Ki(F) 22 k(6

o | I

Ko(SF) —— Ko(SG)
Ko(So)

is commutative. Since O is injective (Theorem 7.3.2), K (¢) is also injective.
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The last assertion follows from the fact that

=

0—F- L F #E—0
is split exact. u
COROLLARY 7.3.10 Let
0—F %Gy H—0, OHF’L'G%H’HO
be split exact sequences in Mg and
FLF 656, B LH

morphisms in Mg such that the corresponding diagram is commutative and let i € {0,1}.

a) If we denote by
¢ : Ki(F) x Ki(H) — Ki(G), (a,b) — Ki(@)a+Ki(7)b,
¢ Ki(F') x Ki(H') — Ki(G'), (d,b') — Ki(@")d' +Ki(Y )b
the group isomorphisms (Proposition 6.2.9, Corollary 7.3.9) then
Ki(n) oKi(9) = Ki(¢) o (Ki(A) x Ki(V)) .

b) If we identify K;(G) with K;(F) x K;(H) using ¢ and K;(G") with K;(F') x K;(H")
using ¢’ then

Ki(u) : Ki(G) — Ki(G'),  (a,b) — (Ki(A)a,Ki(V)b) .

a) For (a,b) € Ki(F) x K;(H),
Ki(n)Ki(¢)(a,b) = Ki(u)(Ki(@)a+Ki(y)b) =

= Ki(¢")Ki(A)a+Ki(Y)Ki(v)b = Ki(¢") (Ki(A) x Ki(V))(a,D) .

b) follows from a). [ |
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8.1 The Bott Map
8.1 The Bott Map

LEMMA 8.1.1 Let F be a full E-C*-algebra and n € IN. We identify SF with
%o (M\ {1}, F) in an obvious way.

a) i:={Xe¥,F)| X(1) € E} is afull E-C*subalgebra of € (I, F).

v

~~
b) If we put for every (o,,x) € SF
—~

(a,x)  T—F, z+— o+x(2)

then the map

v

~=~
v SF —F, (ax)— (a,x)

is an E-C*-isomorphism. Thus the map
A~
Yo: | SF |u— (F)n

is also an E-C*-isomorphism.
¢) ForeveryY € (Fp), put

V' T—F, z— ) (Y()@idk)V; .
teTy,

ThenY € { X € €(I,F,) | X(1) € E, } for every Y € (F), and the map
0" (F)n — {X€CMF) | X(1)€E,}, Yr—Y
is an E-C*-isomorphism.
d) The map 5
0" o v <’§F>n—>{Xe%a,Fn>|x<1>eEn}

is an E-C*-isomorphism. We identify these two full E-C*-algebras by using this

isomorphism.The map
A~
Un (SF )n —{Xe€M,UnF,)| X(1)eUnE,}
defined by ¢" o y,, is a homeomorphism.
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e) For every
X = ¥ ((04.X,) ®idg)V € <’§F>
=
and z €7,
(0"yuX)(2) = ). (&1 + X, (2)) @id )V € F,
teTy,
(0" X)(1) = Y (04 ®idg)Vi €Ey .
teTy,

f) Consider the split exact sequence in Mg (Definition 4.1.4)

SF A~ SF
0— SF-='SF ¢ E—0.

Then
(%)X = (9"yuX) (1)

~~
forevery X € (SF >,,.

g) IfF % Gisa morphism in € then, by the identification of d), for every X € € (I, F,,)
with X (1) € E,, and for every z €T,

( (@) nX ) (2) = @uX(2) .

A=
b) For (o,x),(B,y) € SF ,y€ E,and z €T,

a) is obvious.

—_ —_—
(0,%))"(z) = a" +x(2)" = (a,x)"(2),

—~

—~ A

(0, x)(2))((B,¥)(2)) = (¢ +x(2)) (B +¥(2)) = aB 4 ay(z) +x(2) B +x(2)y(z) =
= (af,ay+Bx+xy)(z) = (a,x)(B,y)(2),

—~—
(1,0)(=) =7,

—~ =
so Y is an E-C*-homomorphism. If (@, x) = 0 then for all z €T

oa=a+x(1)=0, x(z)=o+x(z) =0, x=0,
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S0 VY is injective.
Let X € Fyand put @ := X (1) € E and

x:T—F, z—X(z)—X(1).

<
Then (a,x) € SF and for z €T,

——
(a,x)(z)=a+x(z) =X(1)+X(z) =X (1) =X(2) .

~
Thus (@,x) = X and y is surjective.
By [2] Corollary 2.2.5 and [2] Theorem 2.1.9 a), y, is an isomorphism.

c) follows from [2] Proposition 2.3.7 and [2] Theorem 2.1.9 a).

d) follows from b) and c).

e) We have
N — .
WHX = Z ((Otl,X;) ®ldK)‘/t 5
1€T,
(9"wuX)(2) = } (& +X,(2)) ©idi)V; € Fy,
1€T,

0"y X)(1) = Z (o4 ®idg)V, €Ey .

teTy,

f) and g) follow from e).

The Bott Map

DEFINITION 8.1.2 We put for every full E-C*-algebra F, n € IN, and P € F,,

PM—F,, z—zP+(lg—P).
By the identification of Lemma 8.1.1 d),
~ =
Pe{Xe¥@,UnF,) | X(1)€E,}=Un (SF >n

for every P € Pr F,. Obviously, 0= 1g and TE =zlg.
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PROPOSITION 8.1.3 IfF is a full E-C*-algebra, n € IN, and P € Pr F,,_ then
A~
757 P—pfP.

(with the identification of Lemma 8.1.1 d)). Thus we get a well-defined map

v

~ =
Vg :PrF., — un SF

with VpP = ﬁfor everyPe PrF_, = |J PrF.,,.
nelN

For z €T,

(f:‘;l?ﬁ)(z) = (AP +B,)(2) = Au(zP+ (15— P)) + B, =
— AP+ (15 —AP) = PEP(2) . u
PROPOSITION 8.1.4 For every full E-C*-algebra F there is a unique group
homomorphism
Br : Ko(F) — K (SF) (the Bott map)
such that for every P € Pr F_,
Br[Plo = (VeP)/ ~1= [P], .
Let P,Q € Pr F_, with P ~y Q. By Proposition 6.2.6, there are m,n € IN, m > n+2,
and U € Ung F,, with P,Q € Pr F,, and UPU™* = Q and so
(UPU*)(z) = UP(z2)U* = zUPU* + (1 —UPU*) = Q(2)
for every z €. Thus UPU* = é P~y é and P ~; Q

Let PO € Pr F_, with PO = 0. We may assume P,Q € Pr F,_| with P = PA,, and
Q = OB, for some n € IN (Proposition 6.1.3). For every z €T,

ﬁ(z) =zPA, + (1E _PAn)v Q(Z) =z0B, + (1E - QBn)a

(PQ)(z) = P(z)0(z) = zPAy +z0B, + 1 — OB, — PA, =
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8.1 The Bott Map

—_—~ e~

=z2(P+0)+(1g—(P+0Q)) = (P+0)(2), PO=P+0Q.

By Proposition 6.1.9, there is a unique group homomorphism
ﬂp : K()(F) — K] (SF)

with the required property. [

PROPOSITION 8.1.5 Let F be an E-C*-algebra .

a) There is a unique map Br : Ko(F) — K, (SF) (called the Bott map) such that the

diagram

F
KO(F) Ko(l ) v

pe | | 2

K| (SF) ——— K;(SF)
Ky (81F)

is commutative. Bp is a group homomorphism.

b) If F is a full E-C*-algebra then the above map Br coincides with the map Br
defined in Proposition 8.1.4.

c) IfF 2 Gisa morphism in Mg then the diagram

K
Ko(F) 9% ky(G)

pr | | s

Ki(SF) — K\(SG)
Ki(So)

is commutative.

¢) for €¢ with F —® G unital. For n €IN,P e PrF,, and z €T, by Lemma 8.1.1 g),

((’@) nﬁ) (2) = 20uP+ (12— 9uP) = (9uP) (2).
(A) -
So |.P=¢,P.
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By Proposition 6.1.10 c), Proposition 8.1.4, and Proposition 7.1.6 c),

K1(S9)Br[Plo = Ki1(So) [P} 1
- Kg;) | = [@rP], = BelouPlo = Boko(0) P,
1

Ki(S¢)oBr = BcoKo(®) .

a) By ¢) for €, the diagram

F
Ko(F) 27N k()

B | | e

K{(SF) —— K{(SE)
Ki(Snt)

is commutative. By Proposition 6.1.12 ¢) and Corollary 7.3.9 the sequences

Ky(iF) Ko(nF)

O—>K0(F) KQ(F)

Ko(E) — O,

Ky (sif) v\ Ki(szl)

0 — K| (SF) ———— K, (SF) — Ki(SE) —0

are exact, since the sequence

SiF st
0— SF— SF gr SE—0
is split exact. By the above c) for €g, Corollary 6.2.3 a), and Proposition 6.2.2 ),
Ki(S7") o BroKo(1") = Be o Ko(n") o Ko(1") =

= BroKo(n" 01") = BroKo(0) =0.
Thus
Im(ByoKo(1F)) C Ker Ky (Sa™) = ImK; (S1F) .

The assertion follows now from the fact that K; (St is injective.

b) By c) for €, the diagram

F
Ko(F) U k()

pe | |2

Ki(SF) —— Ki(SF)
Ki(5iF)
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8.2 Higman’s Linearization Trick

is commutative, with B defined in Proposition 8.1.4. By a), this BF coincides with Bg
defined in a).

¢) The following diagrams

(So)

F—25¢ SF % G K (SF) 2%k (s6)
LFl llc SlFJ, lslc K (SlF)l lKl (519)
F—— G SF —— SG K (SF) —— K (SG)
¢ S¢ K1(S9)

are obviously commutative (Proposition 7.1.8 a)). So by a) and ¢) for € (and Corollary
6.2.3 a), Proposition 7.1.8 a)),

Ki(S19) 0 B o Ko(9) = B 0 Ko(19) 0 Ko() = Bz 0 Ko(@) 0 Ko(1F) =

=K (5¢) o BroKo(1") = K (S) o Ky (S17) 0 Br = K1 (S19) 0 K (S@) o B -

The assertion follows now from the fact that K1 (St) is injective. [
8.2 Higman’s Linearization Trick

Throughout this section F' denotes a full E-C*-algebra, m,n € IN, and [ := 2" — 1.

DEFINITION 8.2.1 We shall use the following notation ([4] 11.2):

Trig(n) := {X € €(M,GLg,(Fy)) | X(z) = i ap?’,a, € Fn} ,

p=0

Pol(n,m) := {X € ¢(,GLg,(F,)) | X(z) = i apz’,a, € Fn} ,
Pol(n) := | Pol(n,m), Lin(n) := Pol(n,1),
meN

Proj(n) ::{ﬁ‘ PGPan} .
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LEMMA 8.2.2

a) If X € €(M,GLg, (F,)) then there are k € IN and Y € Pol(n) such that 7*X is
homotopic to Y in €(I,GLg,(F,)).

b) If P,Q € PrF, such that P and Q are homotopic in € (W, GLg, (F,)) then there are
k,m € IN such that 2P is homotopic to 7°Q in Pol(n,l).

a) It is possible to adapt [4] Lemma 11.2.3 to the present situation in order to find a
Z € Trig(n) such that
11
IX-z|<|x7"| .

By [4] Proposition 2.1.11, X and Z are homotopic in € (I, GLg, (F,)). There is a k € IN
such that Y := zXZ € Pol(n). Then z*X and Y are homotopic in €' (I, GLg, (F,)).

b) The proof of [4] Lemma 11.2.4 (ii) works in this case too. |

DEFINITION 8.2.3 The map

m
{Ovl}m—>INlU{0}7 j'_>2ji2l71

i=1

is bijective. We denote by
N;U{0} — {0,1}", p~—|p|
its inverse. For every i € Ny, and p,q € ;U {0} we put

Anyi it pli=lqli=0

“if |pli=0,|gli =1
(poay={ Cri I Pi=0.ldl
Coti if |pli=1,]qli=0
Buyi if |pli=|qli=1
LEMMA 8.2.4
a) For p,q,r,s € NyU{0} and i € N,
0 if |ql; # |li
(p,q)i(r,s)i = .

(pys)i it |qli=rli
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In particular
0 if g#r
((pacI) ( )l)_ I_]l(pv )i if g=r

=

1

b) For p,q € NJU{0} and i € Np,

(p,q)i if |pli=0
An ] 5 | — )
+i(p,q)i { 0 it |ph=1
Q)i if |gli=0
T s gl

0 if gli=1

In particular

p#0=[](Awi(p,q))) =0,
i=1

q#0= ]ﬂ[((pvq)iAm) =0,
i=1

I m 0 if g#0
(Anti(nr—q)i) =4 = .
,g:,g ! l 1I=I1An+i if ¢g=0
I m
c) X Il(p.p)i= 1k
p=0i=1

a) and b) is a long verification.
¢) For every p € INJU{0} put
Jp={i€Nn||pli=0}, Kp:={i€Nn||pli=1}.

Then

m / I m
1g :H(An+i+Bn+l = Z (HA”'H) <H B"‘H) = Z H(pap)i- u

i=1 p=0 \i€J, iek, p=0i=1

LEMMA 8.2.5 Leta < (F,) and
1

:i%z

p=1 q=pi

(4,9—p)i (X € Fusn) -

:s

1
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a) X¥" =o.

b) 1g —X is invertible.

a) We put D :=IN; and for every k € IN and p € DF,

v._y ®._ T
) =) ri. ap ::H"m'
Jj=1 J=1

We want to prove by induction that for every k € IN,
X [ m
=Y a) Y Tl@a—pr").
FEDk q:p(k) i=1
The assertion holds for £ = 1. Assume the assertion holds for k € IN. Then

Y- ¥ Yalay ¥ Y

peDk p'eD g=p®) ¢'=p

((g.a—p™)i(d',d' = P)i) -

:5

/i

I
=

By Lemma 8.2.4 a),

1 m
Xk = ZZapap/ Z qu p ):
i=1

pEka eD q= p(k)

=Y a Z qu P,

pGDkH g=plk+1) i=

which finishes the inductive proof. Since p(k) > k for every k € IN we get X2 = 0.

!
b) By a), 1z + ¥, XX is the inverse of 1z — X. [ |
k=1

PROPOSITION 8.2.6 (Higman’s linearization trick) There is a continuous map
W : Pol(n,l) — Lin(n+m)

m m

such that uX is homotopic to X | ] An+i) + (IE -1I An+i) in Pol(n+m,2l+ 1) for
i=1 i=1

every X € Pol(n,l). If X € Proj(n) then the above homotopy takes place in Lin(n+1).
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8.2 Higman’s Linearization Trick

Assume X € Pol(n,l) is given by
l
X = Z ayz’,
p=0
where a,, € F, for every p € IN;U{0}. Put
!
Xp =) ag™’ (€ ¢, F))
4=p

forall p € IN;U {0} and for all s € [0, 1],

! m
Yoi=1p—s Y, X, [](0,p); (€ €W, Fyim)),
! I m
+SZZqZHrr_ (echLFner))'
g=1 r=qi=1
By Lemma 8.2.4 a),
! m ! m
Y(lg+s Y X, [1(0,p)i) = (e +s5 Y, X, [ J(0,p)))Y; =
p=1 i=1 p=1 i=1

=1p+s ZXXH (0,p)i(0,9);) =

p.q=1 i=
so ¥; is invertible. By Lemma 8.2.5 b), Z; is also invertible. Thus for every s € [0, 1], ¥;
and Z; are homotopic to 1g in € (I, GL(F, 1)) and belong therefore to Pol(n+m,l). By
Lemma 8.2.4 ¢),

I m

1
DN (=
q=0 r=qi=1
Put
m ] m I m
ux = 1E—HAn+i+ZaPH(07P)i_ZZHpp_l E%(]IaFer))'
i=1 p=0 =1

p=1li=1

For z €T,

/
((uX)Z1)( Zz”z

p=0 gq=pi

m

! l
(@:9=p)i= L 2" Y [1(Ansila.a=p)i)+

p=0 g=pi=1

:|§

Il
—_
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m

((p,p—1)i(r,r—q)i) -
1

+zapzqzn O.p)(rr—q izqﬂii

P:g=0 r=qi= p=1r=qi=
By Lemma 8.2.4 b),

i I m
Z Zp Z H(Al’l+l 9,9 — p HAn+t

= Z sl Z anrrH(Ovr)i = Z Z < aﬂPH‘H(Ovr)l =
q=0 r=0 i=1 r=0g=0 i=1
| m 1 m
30 § (LI 38 § (L8
r=0s=r i=1 r=0 =1

[ m
*qu“ Z pr q—1)i= z"Zpr q)i

p=q+li= g=1 p=qi=1
Thus by Lemma 8.2.4 ¢),

m

] /
( ,uX Zl qu ZH p,p— q HA11+1

q=0 p=qi=1
l m i m
+Y X JJ0,7: = Y 2 Y [T(p.p—a)i
r=0 =1 q=1 p=qi=1
I m m i m m ] m
= Z H(p7p)i - HAn—H' + ZXrH(Ov r)i=1lg— HAn-H"" Z Xp H(Ovp)i .
p=0i=1 i=1 r=0 =1 i=1 p=0 =1

By Lemma 8.2.4 a),b), for z €T,

] m

! m
(Y1(uX)Z1)(2) = 1p — HAH, + Z X,,H (0.p)i = X X [1(0.p)i+

i=1 p=1 i=1
m

1 1 l
+ Y X0, pidn) = Y, Y XX,
p=1

i=1 p=14¢=0 i

:s

P)i(0,9)i) =

Il
—_
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m m m m
=1lg— HAn+i +Xo H(Ovo)i =1g— HAn+i +XHA;1+1' .
i=1 i=1 i=1 i=1

Since 1 — HAH, +x! HA,H, is the inverse of Y} (uX)Z; it follows that Y} (uX)Z;
=1

and uX are 1nvert1ble i.e. they belong to € (I, GL(Fy+y)). Thus for every s € [0,1],
Y(uX)Zs € €(M,GL(Fy4m))- Let z €T and let

[0,1] — GL(F,), s+ xs
m m
be a continuous map with xo = X (z) and x; = 1. Since 1g — [ Apyi+x; ! H A, is the

i=1

inverse of 1 — H Api+ X H Ay for every s € [0, 1] it follows that the map

i=1 i=1

m m
[0,1] — GL(Fuym), s+ lg—[JAnvi+xs [ JAnti

i=1 i=1

is well-defined and it is a homotopy from (Y;(uX)Z)(z) to 1g ie.
Y1(uX)Z) € €M, GLy(Fytm)) and Y1 (uX)Z, € Pol(n+m,l). By the above, for every
s €[0,1], Ys(uX)Zs € €M, GLo(Fym)), s0 Ys(UX)Z € Pol(n+m,2l +1). Hence uX is

homotopic  to X(ﬁAn+i) + (1E—ﬁAn+,-) in Pol(n + m2] + 1) and
i=1 i=1
uX € Lin(n+m).

In order to prove the last assertion remark that there is a P € Pr F, with X = P=
(IE—P)+ZP. Thenm=I1=1,a0=1g —P,a1 =P, X; =ay =P,

uX = 1g —PA,+1 +PC;+1 *ZCnJr] s
and for every s € [0, 1],
Yo=1p—sPCl,,  Zyi=lp+s:Cuyr,  Y(uX)Z € Lin(n+1).

Thus uX is homotopic to ¥; (uX)Z; in Lin(n+1). |

8.3 The Periodicity

Throughout this section F' denotes a full E-C*-algebra, m,n € IN, and / :=2" —1.
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LEMMA 8.3.1 If X € ¥(I,GL(F,)) and X(1) € GLg,(F,) then

X e ¢M,GLg,(F,)) .

Let 6 € [0,27x[ and for every s € [0, 1] put
Y, T — GL(F,), z+— X(e "z).
Then Yy(e'®) = X (/%) and Yg(e'®) = X(1) so X(e') is homotopic to X (1) in GL(F,).
Thus X (e'®) € GLg, (F,) and X € €(I,GLg, (F,)). |

PROPOSITION 8.3.2 The following are equivalent for every X € F,,.

a) X € Lin(n).
b) z€T\{1} = X(z) € GL(F,).

¢c) Xisa generalized idempotent of F, ([4] Definition 11.2.8).

a = b is trivial.
b= a. By Lemma 8.3.1, since X (1) = 1z, X € ¢(I, GLg, (F,)) so X € Lin(n).

b< c. Forz €T\ {1},

X(@z2)=Gz-D)X+1g=(z—1) <X—1115) :

-z
{11—2 ze"][\{l}}:{aeC|real(a)=;},

b) holds iff X — a1 is invertible for every o € T with real(a) = %, which is equivalent

toc). [ |

Since

LEMMA 8.3.3 Forz €T,

Ay +By~,Ap+zB, in UnkE,.
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We have
(Co+C)(zAn+By)(Cr+Cy) = (z2C +C)(C +C) = 2B, + Ay

and the assertion follows from Proposition 6.2.5 a). |

LEMMA 8.3.4 Forz €,

1

m I m
Zl HAn+i + Z H P, p i ~h HAn+z Z
i=1 i=1

p=li=1 p=1i

':js

)i in UnEpiy.
1

Let k € IN; and let j € IN,,, with |k|; = 1. By Lemma 8.3.3,

k—1 m

L m
Zk+1HA+l+ZZpr1+ H(pp)

p=li= p=ki=1

= (ZlkHAn+i+H(k>k)i> (2Antj+ (k. k) )+
i=1 i=1
k=1 m

+ZZpr + Z HPP'Nh

p=li= p=k+1i=1

m m
~p <Zl_k HAnJri + H(k, k)l> (AnJrj +Z(k,k),)+
i=1 i=1

k—1 m

I m
+2Y [Ite.p)i+ Y T]p.p)i=

p=1i=1 p=k+1i=1

”HAH,HZHM + Z [1(v-p)

p=li= p=k+1i=1

in Un E,4,,. The assertion follows now by induction on k € IN;. [ |

LEMMA 8.3.5 Let P,Q € PrF,.

a) Forevery z €T,
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m m
=P(z) (HAnJri) +z <1E - HAn+i> .
i=1 i=1

b) If (with the identification of Lemma 8.1.1 d))
An+i> ~h
1

S m
P(HA11+1'>+<1E_
i=1
[ n | SN
Q<HAn+z> + <1E HAn-H'> in Un <SF>n+ma
i=1 i=1

jamE

then
p <HAn+i> + <1E —HAn+i> ~h
i=1 i=1
u . A~
~p Q HAn+t + Apyi in Un | SF |ptm-
i=1
a) We have
m m
P HAn+l +(1e—- HAn+i (Z) =
i=1 i=1
m m
=zP HAn+z +z| 1g— HAn+i +HAn+i+
i=1 i=1
m m m
+( 1 _HAn+i —-P HA11+1 - _HAn+i =
i=1 i=1 i=1
— m m
=P@E) | [[An+i | +2{1e—]]Ansi | -
i=1 i=1
b) Let

A~
[0,1] — Un (SF),,WL,,,7 s— U

be a continuous map with

236 Science Publishing Group



8.3 The Periodicity

o m m
Ul == Q (HAilJri) + <1E - HAn+i> .
i=1 i=1

m m
Put U] := Us< An+,'> +z <lE ]_[An+,'> for every s € [0,1]. Then s +— U] is a
1 i=1

1
continuous path in Un ( SF > n+m and by a),

m m
Uy = Uy <HAn+i> +z <1E - HAn+i> =
j= i=1

i=1

=P (ﬁ&w) +z <1E - ﬁfhm) =

i=1 i=1
P(

Uy=0

An+i> + (15 ﬁAn+i> (@),
1 i=1

=

m

1

i=1

7 N

An+i> + <1E ﬁAn+i> (Z) . [ |

1

PROPOSITION 8.3.6

v

~~
a) IfUeUn | SF |, then there are k,m € IN and P € Pr F,,, such that (with the

identification of Lemma 8.1.1 d))

0 (TTA A ) B =
U ([TAnsi |+ [ 1e=]JAnsi | ~n P in Un { SF |uim-
=1 i=1

1

-~ A<
b) Let P.Q € PrF, with P ~, QinUn <SF )n Then there is an m € IN such that

m m
P (HAn+i> + <1E - HAn+i> ~h
i i

i=1

3

m
~n O (HAM-) + (15 - A,H,») in PrF,.
i=1 i

Il
-
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a) By Proposition 8.2.2 a), there are k,m € IN, k < 2™, and X € Pol(n,1) such that Z*U
is homotopic to X in € (I, GLg(F,)). By Proposition 8.2.6, there is a ¥ € Lin(n+m) with

X (HA,,+,~> + (15 —HA,H_,~> ~nY in Pol(n+m2l+1).
i=1

i=1

By [4] Lemma 11.2.12 (i), there is a P € Pr Fy, with Y ~, Pin Lin(n+m). Thus

(Z*u) <ﬁAn+i> + <1E _ﬁAn+i) ~n
i=1 i=1

m m
~p X ( An+i> + <1E - HAn-H'> ~p Y ~p P
i=1 i=1

in €(T, GLg(Fy4+m)). By [4] Proposition 2.1.8 (iii) and the identification of Lemma 8.1.1

d)?
m m _ A~
(ZkU) (HAVL+I> + <1E - HAn+i> ~h P in Un < SF ),H,m .
i=1 i=1

1

b) By Proposition 8.2.2 b), there are k,m € IN, k < 2™, such that #*pP ~n zké in Pol(n,I).
By Lemma 8.3.4 and Lemma 8.2.4 ¢),

m m m m
Z (HAn+i> + (15 _HAn+i> ~h ( An+i> +z <1E —HAn+i>
i=1 i=1 i=1 i=1

inUn E,4,,. By Lemma 8.3.5 a),

P <ﬁAn+i> + <1E _ﬁAn+i> (2) =
i=1 i=1

(i) (o f10))-
y <13(z) (ﬁA"”) + (15 —ﬁAn+,->) ~y
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~h Q <ﬁAn+i> + <1E ﬁAiz+i) (Z)
i=1 i=1

in Pol(n+m,!). By Proposition 8.2.6,

P (HAn-H) + <1E - HAn+i> =
i=1 i=1

m m m m
=P (HAn+i> + <1E _HAn+i> < An+i> + <1E —HAn+i> ~h
i=1 i=1 i=1 i=1
An+i> ~p
1

~p | P <HAn+i> + (15 -
i1 i
~h | Q <HAn+i> + (15 —HAn+i> ~h

jamE

i=1

~n O <HAn+i) + (15 - HAn+i>
i1 '

in Lin(n+m). By Lemma 8.3.5 a),

m m m m
p (HAn+i> + <1E —HAn+i> =P <HAn+i> +z <1E —HAn+i> ~h
i=1 i=1 i=1 i=1

~n Q (HAn+i> +z (15 - HAn+i> =0 (HAn+i> + (15 - HAn+i>
i=1 i=1 i=1 i=1

in Lin(n+ m). The assertion follows now from [4] Lemma 11.2.12 (ii). |
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THEOREM 8.3.7 The Bott map is bijective.
Step 1 Surjectivity

A~
Leta € K| (SF). Therearen € Nand U € Un | SF |, witha = [U];. By Proposition
8.3.6 a), there are m,p € IN, p > n, and P € Pr F},,, such that

m m - A
(ZZU) (HAP_H‘> + <1E _HAP+i> ~n P in Un ( SF >p+m .
i=1 i=1

=
By Lemma 8.3.4 and Lemma 8.2.4 ¢),

m m m
Ig — HAp+i =z <1E - HAp+i> + (HAp+i> ~p
i=1 =1 =1

m m
~p (]E —HAP.H) +Zl (HAP_H') in Un Ep+m
i=1 i=1

so by Proposition 7.1.3 and Proposition 8.1.4,

m
)[Ph 1E*HAp+i
0 i=1

(ZIU) (l’_nIApH‘) + <1E ﬁAP+i>] —
i=1 i=1 .
- l(lE ﬁAp+i> +7 (ﬁAeri)
i=1 i=1 |
((ZIU) (ﬁApH) + <1E _ﬁAeri)) X
i=1 i=1

|

S
I

Q
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Step 2 Injectivity
Let a € Ko(F) with Bra = 0. By Proposition 6.1.5 d), there are P,Q € Pr F,, PQ =0,
~ ~ o~ ~ =~
such that @ = [P]o — [Q]o. Then [P]; = [Q]1, so U := PQ* € ung, SF . Then
U=(z=1D)P+1g)((z—-1)Q+1g)) = (z-1)P+(EZ—-1)Q+1g, U(l)=1g.

By Proposition 7.1.3, there is an m € IN such that

" " ; A=~
Vi=U|[]Ani |+ | 1le—[]Ansi | = thimalU €Ung,,,, | SF |nim.
i=1

i=1

A~
Then thereisaW € Un E,,, withV ~, W in Un ( SF >,,+m. By the above,

' =~
W:W(l)NhV(l):lE, VNh lE in Un (SF),H,,”.

By Proposition 7.1.3,

m m
P <HAn+i> + <1E - HAn+i> = T,imeP = (waLmAnU)(TrI;rm,nQ) =
i=1

i=1

F B o m m A~
= V(Tn+m7nQ) ~n Q0 HAn+i + | 1g— HA,1+,' in Un | SF |u+m,
i=1

i=1

so by Proposition 8.3.5 b),

m m X ;-/v\
~p QO Apgi |+ 1g— HAn+i in Un | SF |ntm-
i=1 i=1

m m
P =P (HAn+i> + <1E - HAn+i> )
i=1 i=1

Put
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Q=0 (HAn+i> + <1E HAn+i> .
i=1 i=1

By Proposition 8.3.6 b), there are m’, p’ € IN such that

!

m' m
P <HAP/+1> + <IE — HAP/Jri) ~h
=1 '

J=1

3

J

m !
~n Q/ (HA[,/_H) + <1E - Ap’+i> in Pr Fpr+m/ .
Jj=1

I
-

It follows successively

ﬂ’l/

m/
P/'I—IIAP/+/ - Q/HlAp’#] ’
j=

J= do L 0
)]l ) 30
i=1 Jj=1 Jo L =1 j=1 0
[Plo = [Qlo, a=[Plo—[Qlo=0. [ ]

Remark. By Theorem 8.3.7 and Proposition 8.1.5 ¢), the functor Ky is determined by
the functor Kj.

COROLLARY 8.3.8 (The six-term sequence) Let
¢ v
0—F—G—H—0

be an exact sequence in Mg .

a) The sequence
N Sy
0—SF —SG—SH —0

is exact. Let
6, : K1 (SH) — Ko(SF)

be its associated index map (Corollary 7.2.3) and put (Proposition 8.1.5, Theorem
7.3.2)

& = GF_loézoﬁyzKo(H)—>K1(F).
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We call & and &, the six-term index maps. If we denote by & the corresponding

six-term index map associated to the exact sequence in Mg (with obvious notation)

0—sF-%crYsFr o0

then & = Br.
b) The six-term sequence

Ko(F) Ko(G) ™), Ko(H)

dl l

Kl(H) — Kl(G) — Kl(F)
Ki(y) Ki(9)

Ko(9)

&

is exact.

¢) If F (resp. H) is K-null (e.g. homotopic to {0}) then K;(G) pily Ki(H) (resp.
Ki(F) IM K;(G)) is a group isomorphism for every i € {0,1}.

d) If G is K-null (e.g. homotopic to {0}) then

Ko(H) 25 Ky (F), Ki(H) 25 Ko(F)

are group isomorphisms.

e) If ¢ is K-null (e.g. factorizes through null) then the sequences

Z

0 — Ko(G) Y Ko(#) 2 Ky (F) — 0,

=

0 — K1(G) "% g, (1) 2 Ko(F) — 0

are exact.

f) If yis K-null (e.g. factorizes through null) then the sequences

0— Ko(H) -2 k1 (F) 9 k1(G) — 0,

0 — Ki(H) 5 ko(F) 5% ko (G) — 0

are exact.

g) The six-term index maps of a split exact sequence are equal to 0.
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a) is easy to see.

b) By Theorem 8.3.7, By is an isomorphism. By Theorem 7.2.9, the sequences

)= )

Ki(F) ™ K (G) ™ Ky (1) 25 ko(F) 2% ko(G) ™ ko (H),

Ky (Sy

Ki(SG) Y K\ (SH) -2 Ko(SF) Y Ky (5G)

are exact. By Proposition 8.1.5 c¢) and Proposition 7.3.8, the diagrams

Ko(G) =Y Ky(H) Ki(F) 2% K (6)

ﬁGJ{ lﬁﬁ QFJ( lec

Ki(SG) —— Ki(SH) Ko(SF) —— Ko(SG)
K1 (Sy) Ko(So)

are commutative. It follows
8o Ko (W) = 6" 080 BuoKo(¥) =6 080K (Sy)ofs =0,

ImKy (y) C Ker&. Let a € Ker 8. Then & Bra = 0pdpa = 0, so there is a b € K; (SG)
with K (Sy) b = Bya. It follows

a=Py'Ki (Sy)b=Ko(y)B;'beImKo(y),  Kerd CImKo(y).

c) The assertion follows immediately from b). By Proposition 7.1.8 e), a
null-homotopic E-C*-algebrais K-null.

d) The proof is similar to the proof of c).
e) and f) follow from b) and Proposition 7.1.8 f).

g) By Proposition 6.2.9 and Corollary 7.3.9 (with the notation of b)) Ky (¢) and K; (@)

are injective and Ky (y) and K () are surjective and the assertion follows from b). W

COROLLARY 8.3.9 Let us consider the following commutative diagram in Mg

0 F—2s6 Y. H 0
AN s
0 Fl— G —— H 0,
® v
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where the horizontal lines are exact.

a) (Commutativity of the six-term index maps) The diagrams (with obvious

notation)
S
Ki(H) —2— Ko(F) Ko(H) —2— K(F)
W)l Ko(1) w)l lklm
Ki(H) — Ko(F") Ko(H') —— K\(F')
8] %

are commutative. If K;(F) = K; (F'), K;(H) = K; (H'), and K; (B) and K; (y) are
the identity maps for all i € {0,1} then & = &/ for all i € {0,1}.

b) The diagram (with obvious notation)

Ko(F) Ko(F) =20 ko) 2 ko (h) Ko(H)
- Ko(7) Ko(a)l Ko(B) -
K() ) KO(Y) KO(F/) KO((P,) K (G/) O(W,) K (H/) Ko(ﬁ) K()(H)

is commutative.

a) The commutativity of the first diagram was proved in Proposition 7.2.4. By
Proposition 7.3.8, the diagram

Ki(F) 7 k()

| Jon

KO(SF) Em— Ko(SF/)
Ko(S7)
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is commutative. By Proposition 7.2.4, the diagram

Ki(SH) —2 Ko(SF)

Ki(5p) | | ®ots)

Ki(SH') —— Ko(SF")
&

is commutative, where & and &) are defined in Corollary 8.3.8 a). By Proposition 8.1.5

¢), the diagram

Ko(H) 0 k()

bu | | B

Ki(SH) —— K;(SH')
K (SB)

is commutative. It follows, by the definition of & (Corollary 8.3.8 a)),
Ki(y)o8 =Ki(7)06; ' 080 By =6, 0 Ko(Sy) 0 0 By =

= 0. 08,0 Ki(SB) o B = 0,,' 0850 By o Ko(B) = & o Ko(B) -

b) follows from a) and Corollary 8.3.8 b). |
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Variation of the Parameters

Throughout this chapter we endow {0, 1} with the structure of o group by identifying
it with Z,.






9.1 Changing E

9.1 Changing £

Let E' be a commutative unital C*-algebra, ¢ : E — E’ a unital C*-homomorphism,
and
fiTXT—UnE', (s,t)— ¢f(s,t).

Then f € #(T,E’) and we may define E], with respect to f’ for every n € IN like in
Definition 5.0.2.

Letn € IN and put

=Y (9Cu) idk)Vi (€ EL).

teTy,

Forevery s € T,_1,

Y (f(s7',0)Cp 1) @idx)V/ =VIC, =

teTy,

=GV = Y ((flts71,5)C, 1) @ idi )V

teTy,

so by [2] Theorem 2.1.9 a),
f(s_ltvt)cn,s"l = f(ts_15s)cn,ls"
for every t € T,,. It follows

Fs7nC = fis™s)C. vi‘c,=cvl', ¢ e(E. )"

n,s—'t nts—1

Thus (C))nen satisfies the conditions of Axiom 5.0.3 and we may construct a K-theory
with respect to T, E’, f’, and (C},),eN, which we shall denote by K'.

Let F be an E’-C*-algebra. We denote by F or by ®(F) the E-C*-algebra obtained by
endowing the C*-algebra F' with the exterior multiplication

ExXF—F, (o,x)— (po)x.
IfF-%Gisa morphism in M/, then F 2. Gisa morphism in Mg , in a natural way.
Let F be an E’-C*-algebra and n € IN. We put for every

X = Z (((X,,x[) ®ldK)‘/lf E ﬁn,
teTy
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X' = Y (9o,x) 2idg)V/ (€ F)
teTy

and set
Orn Fp—F,, X+—X .

Then ¢r, is a unital C*-homomorphism (surjective or injective if ¢ is so ([2] Theorem
2.1.9 a))) such that ¢F7n(UnE,l IV7“,1) C UnE’/I F, and PFp 0 O'f = O',f o ¢r . Thus we get for
every i € {0,1} an associated group homomorphism ®; r : K;(F) — K/ (F).

Let E” be a unital commutative C*-algebra, ¢’ : E’ — E” a unital C*-homomorphism,
and ¢” := ¢’ o ¢. Then we may do similar constructions for ¢’ and ¢” as we have done
for ¢. If F is an E”-C*-algebra, ®'(F) and ®"(F) the corresponding E’-C*-algebra and
E-C*-algebra, respectively, then ®”(F) = ®(®'(F)). If @} and P/ are the equivalents of
®; with respect to ¢’ and ¢, respectively, then @/ = @ . 0 ®; g () for every i € {0,1}.
If E” = E and ¢” = idg then C] = C, for every n € IN and for every E-C*-algebra F,
@' (F) = F and @ = idy,r) for every i € {0,1}. If in addition ¢"" := ¢ 0 ¢’ = ids then
C)' =C], for every n € IN and for every E’-C*-algebra F, ®'(®(F)) = F and (ID;,d)(F) o
D F = idK{(F) for every i € {0,1}, i.e. the K-theory and the K’-theory “coincide”.

Remark. Let P € PrE,0 < P < 1g, and put
Pf:TxT —UnPE, (s,t)— Pf(s,t).

Then Pf € % (T,PE) and we denote by PK the K-theory with respect to 7, PE, Pf, and
(PCp)nen- Then for every E-C*-algebra F and i € {0,1}

Ki(F) ~ ((PK)i(PF)) x (1 = P)K)i((1g — P)F)) .
If F -5 G is a morphism in 91 then
P¢:PF — PG, Px—s Pox
is a morphism in Mpg and
Ki(¢) = (PK)i(P@) x ((1g — P)K)i((1g — P)@)

for every i € {0,1}.

PROPOSITION 9.1.1 We use the above notation and assume i € {0,1}.
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a) If F 2 Gisa morphism in Mg then the diagram

K(F) X2 Kk(G)

q%:Fl l‘biﬁc

K/(F) —— K/(G)
Ki(¢)

is commutative.

b) For every E'-C*-algebra F the diagram

is commutative, where [}, denotes the Bott map in the K'-theory.
c) If
0—F-%G65H—0

is an exact sequence in Mg then the diagram

Ki(A) =2 Ko(F)

tbl.Hl l‘bO,F

Ki(H) —— Ky(F)
1

is commutative, where 6{ denotes the index maps associated to the above exact

sequences in the K'-theory.

a) For every n € IN and

X= Z ((ataxt)@)idK)th c }VT“,“

teTy

Pu0raX = Y (000, 9x) @idi )V = $G.05,X .

teTy,

b) Foreveryn € IN and P € Prlf",,,

e

¢senP = (P) = P = OrnP .
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c)LetneIN and U € Un Iv?n_l. By Proposition 7.2.1 a), there are V € Un én and
PePr IV7“,, such that

v v

W,V =AU +BU", $,P=VAV* .

Then
V061V = O W,V =As(0n—1U) + By (¢ n—1U)*,

(Z)n(PF,nP: ¢G,n(7)nP: (¢G7HV)A;(¢G.nv)*

so by Corollary 7.2.3,
8P y[UN = 81[0n n—1U]1 = [@p.nPlo = Po.r[Plo = Do réi U]
51/0CD1_’H=‘1>07FO51 . .
LEMMA 9.1.2 Let F,G be C*-algebras, ¢ : F — G a surjective C*-homomorphism,
and
v € (0,1),F) — % (0,11,G), x> gox.
a) Y is surjective.
b) Assume F unital and let v € Un € ([0,1],G) such that there is an x € Un F with
@x =v(0). Then there isau € Un € ([0, 1],F) with yu =v and u(0) = x.
a) Let y be an element of € ([0, 1], G) which is piecewise linear, i.e. there is a family
O=s51<s$9< - <sp_1 <8, =1
such that for every i € IN,_; and 7 € [0, 1],
(I =1)si+1sip1) = (1= 1)y(si) +1y(sit1) -

Since ¢ is surjective, there is a family (x;);en, in F with @x; = y(s;) for every i € IN;,.
Define x : [0,1] — F by putting

x((1=1)si+tsi41) := (1 —1)x; + 12141
forevery i € IN,_; and ¢ € [0,1]. Fori € IN,_; and ¢ € [0, 1],

(yx)(L—=1)si+tsiv1) = @((L —1)xi +txi11) =
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= (1 =2)y(si) +1y(siv1) = y(1 = 1)si +15i41) ,

so yx =y, y € Imy. Since the set of elements of % ([0, 1], G), which are piecewise linear,

is dense in % ([0, 1],G) and Im y is closed (as C*-homomorphism), ¥ is surjective.

b) Let
w:[0,1] — UnG, s——v(0)*v(s).

Thenw € Un % ([0,1],G) and w(0) = 1. Put
w1 [0,1] — UnG, s+ w(st)
for every ¢ € [0,1]. Then
[0,1] — Un%([0,1],G), tr—w
is a continuous path with wy = w and wo = l¢([,1],)- Thus
weUng%([0,1],G) .

By a), v is surjective, so by [4] Lemma 2.1.7 (i), there is a ' € Un ¢ ([0,1],F) with
yu' = w. Put
u:[0,1] — UnF, s—xu'(0)*d(s) .

Thenu € Un € ([0,1],F), u(0) = x, and

(wu)(s) = @(u(s)) = @(xud' (0)"u'(5)) = @ (x) ((wu')(0))" ((yu')(s)) =

for every s € [0, 1], i.e. yu=v. [

THEOREM 9.1.3 ®; ¢ is a group isomorphism for every i € {0,1} and for every E'-C*-
algebra F.

By Proposition 9.1.1 b), @ r = (B) ! 0@ s o B, so it suffices to prove the assertion
for @ r only. Letn € IN and U € Un Fy,. Put V :=U(cF'U)* ~1 U. Since 6}V = 151, V
has the form

V= Z (o4, xr) ®idK)th/

teTy
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with o4 = 611 and x; € F for every ¢ € T,,. If we put

W= Z ((8141E,x)® idK)Vlf

teTy,

then ¢r,W =V and we get @, p[W]; = [V]; = [U]1, so Py F is surjective. Thus we have
to prove the injectivity of ®;  only.

Let a € Ker @1 r. We have to prove a = 0. There are n € IN and

U:=Y (o, x)@idg)V/ e UnF,
t€T,

with a = [U];, where (04,x;) € F for every t € T,,. Since [U']; = @, (U] =0, by
Proposition 7.1.3, there is an m € IN such that

Ué = (HA:l-H) U’+ <1E’ _HA;l-‘ri)
i=1 i=1

is homotopic in Un Fy1y to a U] € Un E},,,, (C Un Fy1,,). Thus there is a continuous

path
U':[0,1] —UnFyp, s—U.

A
Case 1 ¢ is injective

Put
W) = U0, (U Ug) (€ Un Fyim)

for every s € [0,1]. Then

m N m
Grf+mW; = Grﬁ»mU(; = ¢F,n+m ((HAn-H) (Grll:U) + <1E _HAn+i>>
i=1 i=
for every s € [0, 1]. If we put

W =Y ((Bsssyss) @idg)Vi"

t ETn+m

where (By,,ys:) € F forall s € [0,1] and t € T,,, then

Z ((ﬁs,ho) ®idK)th = O-rf-&-mWs/ =

IETrH—m
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)

and so by [2] Theorem 2.1.9 a), there is a (unique) family (% );cr,,,, in E with B, = ¢ for

—

1

= OFnim <<ﬁA"+i> Y (o, 0) @id )V + (15 -
i1

=
every s € [0,1] and 7 € T4, Since ¢ is injective, ¢4, is also injective and ¢n+m(F ntm)
may be identified with a unital C*-subalgebra of F;, ,,. Thus

W01 — UnFoim, s Y ((%oys) @idg)Vy

t €Tn+m

is a continuous path in Un F ntm With @F Wy = W/ for every s € [0, 1]. It follows

m m
¢F,n+mW0 = W({ = U(/) = ¢F.,n+m (( An+i> U+ <1E - HAnH)) )
i=1 i=1

OFnmWi = Wl/ = Ul/ Grllirm(Ul/* U(l)) = GrermU(/) € ¢F.,n+m(Un Er/ler) :

Since ¢ is injective, @ ;4. 1S also injective and we get

<HAn+i> U+ <1E —HAn+i> =W,
i=1 i=1

i=1 i=1

<HAn+i> U+ <1E —HAn+i> €Ung,,, Frim, g=[U=0.

Case 2 ¢ is surjective

We put

Uy := ( mlA,,H) U+ (1,; - ﬁAW) (€EUNFpym) -
i= i—
Since ¢ is surjective, @r 4, is also surjective ([2] Theorem 2.1.9 a)). Since
OrnmUo = U
it follows from Lemma 9.1.2 b), that there is a continuous path

[0,1] —)Unﬁn+m, s +— Uy

with ¢ ,+mUs = U] for every s € [0,1] and Uy = Up . Since ¢p iUy =U| €UnE, ..
we have U € UnEHmI::ner and g = [U]; = [Up]; =0.
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Case 3 ¢ is arbitrary

There are a unital commutative C*-algebra E” and a unital C*-homomor-phisms ¢’ :
E — E" and ¢" : E” — E’ such that ¢’ is surjective, ¢” is injective, and ¢ = ¢” o ¢’
and the assertion follows from the first two cases and the considerations from the begin
of the section. [

COROLLARY 9.14 Let E',E" be unital commutative C*-algebras such that E = E' X
E" and

0 E—E', (Xx")—X,

¢// E—E", (x/’x//) NN

If F' is an E'-C*-algebra and F" is an E"-C*-algebra then the map (with obvious

notation)
Ki(@'(F)) x @"(F")) — K{(F') x K (F"),  ar— (P} pr x /) (9ya)
is a group isomorphism for every i € {0, 1}, where
¢ Ki(®'(F') x @"(F")) — Ki(@/(F')) x K;(®"(F"))
is the canonical group isomorphism (Product Theorem (Corollary 6.2.10 b), Proposition

7.3.3 b)). [

COROLLARY 9.1.5 If f(s,t) € T for all s,t € T and C, € T, for all n € Wand if K©
denotes the K-theory with respect to T, T, f, and (Cy)ne then Ki(E) = KF (¢ (Q,T))
Soralli € {0,1}, where Q denotes the spectrum of E. |

PROPOSITION 9.1.6 If F is an E'-C*-algebra then the map

v

©:EX®(F) —)&;ZF\), (0, x) — (a,x— o)

is an E-C*-isomorphism.

For (a,x),(B,y) € Ex®(F)and Y€ E,
o(v(a,x)) = o(ya, (@y)x) = (o, (97)x — ¢(yar)) =
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=(10)(a,x—9a)=(7,0)p(a,x),
o(a,x)" = @(a’,x") = (a",x" —ga”) = (p(at,x))",
¢(a,x)p(B,y) = (ot,x—9a)(B,y—9B) =
= (o, (¢a)y—¢(af)+ (¢f)x—o(aP)+xy—(¢f)x— (pa)y+d(af)) =

= (aﬁ,xy_ (b(aﬁ)) = (p(aﬁ,xy) = (p((a,x)([i,y)),

so ¢ is an E-C*-homomorphism. The other assertions are easy to see. |

9.2 Changing f

In all Propositions and Corollaries of this section we use the notation and assumptions
of Example 5.0.4 and F denotes a C*-algebra.

LEMMA 9.2.1 For every n € IN there is an €, > 0 such that for every m € IN, m < n,

and a € UnT, |a— 1| < &, there is a unique o € UnT, |Be — 1| < L, with B2 = a;

moreover the map o, — P is continuous.

If B, are distinct elements of Un C and ™ = y" then
2mi

B-rz[l—em|>—>
and the assertion follows from the continuity of the corresponding branch of the map
o . |

DEFINITION 9.2.2 For every finite group S we endow F (S,T) with the metric

ds(g,h) := sup{ [g(s,1) —h(s,0)| | 5,0 €S}

forall g,h € F(S,C).

Remark. .7 (S,T) endowed with the above metric is compact.
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DEFINITION 9.2.3 We put
AT,E):={A:T—UnE|A(1)=1g}

and
OA:TXT —UnE, (s,t)—> A(s)A(t)A(st)"

forevery A € A(T,E).
LEMMA 9.2.4 Let S be a finite group and Q a compact space.

a) {84 | A € A(S,C)} is an open set of F (S,T).
b) For every € > 0 there is an € > 0 such that for all g.h € F(S,¢ (Q,0)), if
llg(s,1) —h(s,2)|| <&

forall s,t € S then there is a . € A(S,T) such that h = g8\ and |A(s) — 1| < € for
alls € S.

c) Letg e F(S,% (Q,C)) and ¢ : |0,1] x Q — Q a continuous map. We put for every
uel0,1],
Gui=0(u,): Q—Q,

GuiSXS—UNT, (5,1)— g(5,) 0,
Then g, € F(S,% (Q,T)) for every u € [0,1] and there is a A € A(S,TC) with g| =

g06)L.
a) By [3] Theorem 2.3.2 (iii),

{7 geF(S0)} /=y

is finite. { A | A € A(S,C)} is obviously a closed subgroup of . (S,T). By the above
and [2] Proposition 2.2.2 ¢), % (S,C) is the union of a finite family of closed pairwise
disjoint sets homeomorphic to { A | L € A(S,C) },so { A | A € A(S,T) } is open.

b) By a), there is an € > 0 such that for all g’,n’ € .#(S,T) with dg(g’,h") < € there is
ad e A(S,C) with i = g’6A. We may assume that

(14&)“S — 1 < ecaras
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where €c,,q4s Was defined in Lemma 9.2.1.

We put for every o € Q
0:SXS—UnC, (s,0)— (g(s,1))(@),

he:SxS—UnC, (s,t)— (h(s,1))(w).

Let @ € Q. By the above, there is a A, € A(S,C) with g4 = hyOAy. Lets € S and let
n € IN be the least natural number with s* = 1g. By [2] Proposition 3.4.1 ¢),

n—1

Ao(s)" = H(gw(sj,s)*hm(sj,s)) .

=l

For every j € IN,_,

HIE —g(s%s)*h(sﬂs)H = Hg(sj,s) —h(sﬂs)“ <e,

n—1
g —[T(s(s7,5) h(s’5))

j=1
By Lemma 9.2.1, there is a unique y € Un C with

[T(s(s",s

Jj=1

Tt = (1= g7, h )| < (1407,
j=1

< (1 +8)n_1 — 1 <eécans -

n—1 X X 1
= i s)*h(s! —1 .
/y'l ]I:]l(g(s 7S) (S ’s))7 |y ‘ < CardS
For @ € Q, since |1 — Ay (s)| < €caras, we get Ag(s) = ¥(s). So if we put
A(s): Q—T, o 7y(s)

we have A € A(S,C) and g = h6A. By Lemma 9.2.1, we may choose € in such a way that
the inequality |A(s) — 1| < € holds for all s € S.

¢) By b), there is a family (4;);en, in A(S,TC) and
O=ug<up < - <up_1<u,=1
J
such that g,, = g, ,04; for every i € IN,. By induction go6 <H l,) = gu; for every
i=1 :

n
j € IN,,. Thus if we put A := [] A; then go8A = g; |
i=1
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Remark. Let A € A(T,E) and f' = f6A (€ .#(T,E)). For every full E-C*-algebra F
and n € IN we denote by F the equivalent of F,, constructed with respect to f” instead of
f (Definition 5.0.2). By [2] Proposition 2.2.2 a; = ay, there is for every n € IN a unique
E-C*-isomorphism ¢! : F,, — F! such that for all m,n € IN, m < n, the diagram

(PF
F, —— F),

Lo

F, —— F]
or
is commutative, where the vertical arrows are the canonical inclusions. We put C, :=
©EC, for evrey n € IN. (C}),eN satisfies the conditions of Axiom 5.0.3 with respect to
S, so we can construct a K-theory with respect to T, E, f’, and (C}),eN, which we shall
denote by K/'. If m,n € IN, m < n, then the diagrams

pnm T”’:’n
Fyn —— UnF, —— UnkF,
“”f’l l""f soril l%F
F, —— F, UnF! —— UnF!
pnm 11'

n,m

are commutative and so we get the isomorphisms
PrF, — PrF’, un F. — un'F, .
By these considerations it can be followed that K and K/ " coincide.
DEFINITION 9.2.5 Let Q be the spectrum of E, I' a closed set of Q, and F a

C*-algebra. We denote by € (E;I',F) the E-C*-algebra obtained by endowing the
C*-algebra € (U, F) with the structure of an E-C*-algebra by putting

ox:I'—F, o— a(o)x(o)
Jorall (a,x) € EXE (L,F). If Q' is an open set of Q then the ideal and E-C*-subalgebra
{xe € (E;QF)| x|(Q\Q)=0}

of € (E; Q,F) will be denoted ¢, (E; Q' ,F).
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By Tietze’s theorem
0— % (E;Q,F) 2 ¢ (E;QF) 5 ¢ (E;Q\Q ,F) —0
is an exact sequence in 21z, where ¢ denotes the inclusion map and
Vv C(E;QF) — € (E;Q\Q F), x—x|(Q\Q).
PROPOSITION 9.2.6 We denote by Q the spectrum of E, by I a closed set of Q, and by
B :[0,1] x Q@ — Q a continuous map such that
0eQ=—%0,0)=0, 3(1,0) el

and ¥(s,0) = forall s € [0,1] and ® €T. We put E' .= ¢ (I',C), E" :=E, U5 := 9 (s,")
Sforevery s €0,1], and

0:E—E, x——xl, 0 :E —E'"=E, xX+—xo¥,
fiTXT —UnE', (s,t)— ¢f(s,t) = f(s,1)|T,
f1iTxT —UnE", (s,t)— ' f'(s,t) = f(s,t) 00 .
a) Thereisa A € A(T,E) such that " = f6A and the K-theories associated to f and

f" coincide (as formulated in the above Remark). If T is a one-point set (i.e. Q is
contractible) then f"(s,t) € UnT (CUnE) forall s,t €T.

b) If we put
y:€(E;QF)— %€ (E;T,F), x—x|[

then K;(6o (E; Q\T',F)) = {0} and
Ki(y) : Ki(6 (E;Q,F)) — Ki(¢ (E;T',F))
is a group isomorphism for every i € {0,1}.
c¢) IfT" is a compact subspace of Q\T then
Ki(¢ (E; Q\ (FUIY),F)) = K11 (€ (E;T',F))

forallie{0,1}.
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d) Let T be a closed set of Q, ¢ : 6o (E; Q\ (TUT),F) — € (E; Q,F) the inclusion
map,
V6 (E;QF)— ¢ (E;TULF), x—x|(TUD),

and &y, 8, the corresponding maps from the six-term sequence associated to the

exact sequence in Mg

0— % (E;Q\ (TUT),F) -5 ¢ (E; Q,F) %5 % (E;TUT,F) — 0
then the sequence
. Ki(y) . = S
0 — Ki(¢ (E; Q,F)) =% Ki(¢ (E;TUL,F)) —

5 Kis1(% (E; @\ (TUT), F)) — 0

is exact for every i € {0,1}.

a) By Lemma 9.2.4 ¢), for every m € IN there is a A, € A(Sy,, E) with f”|(Sy X Si) =
gm0 An. We put
A:T—UnE, t+——2,() if t€S,.
Then
f(s,0) = TT (8m6A) (smytm) = (fEA)(s,1)

melN
foralls,t € T,ie. f' = fS6A.

—_—
b)Letn €IN and X € (%0 (E"; Q\F,F)) . Then X has the form

n

X =Y ((a,x)®idg)Vi"

teTy

where o € E"” and x, € 6y (E"; Q\T',F) for all t € T,,. We put
X = Z ((al 0¥, x0 ‘09) ®idK)sz
teTy

for every s € [0,1]. Then

v

———
[0,1]—><‘€0(E”;Q\F,F)> , s X

n
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is a continuous map, Xo = X,

Xi =Y (o 0%1,0) @idg )V,

teT

and

/_/v— /_/v%
(%(E”:Q\F,F)) —><‘€0(E”;Q\F,F)> , X— X,

n

is an E”-C*-homomorphism for every s € [0, 1]. Thus Kif”(%o (E"; Q\T,F)) ={0}. By
a), Ki(6o (E: Q\T',F)) = {0}.

If ¢ : 6 (E;Q\T,f) — € (E;Q,F) denotes the inclusion map then
0 — % (E; Q\T,F) > ¢ (E; Q,F) -5 ¢ (E;T,F) — 0

is an exact sequence in 9Mgand the assertion follows from the six-term sequence
(Corollary 8.3.8 ¢)).

c) If we put
F =% (E;Q\(CUT"),F), F:=%/(E;Q\IF), F:=%¢(ETIF),

o —FE, x—zx,
v:B—F, x—x|l
then
0—F-5Fh -5 F—0

is an exact sequence in Mg and the assertion follows from b) and from the six-term

sequence (Corollary 8.3.8 d)).

d) @ factorizes through % (E; Q\ T, f) so by b), K;(¢) = 0 and the assertion follows
from the six-term sequence Corollary 8.3.8 b). |

COROLLARY 9.2.7 We use the notation of Proposition 9.2.6. Let Q be a compact
space and O : Q — Q a continuous map such that the induced maps Q\ (TUT’) —
Q\9(TUl"), T — 3(T), and I — O(I") are homeomorphisms. If we put E := € (Q,T)
and

0:E—E, x——xo0d
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and take an f € F (T,E) such that f(s,t) = ¢ f(s,t) for all s,t € T and a corresponding
(Co)ne € T1 E, then with the notation from the beginning of section 9.1 (with E and E
nelN

interchanged)
K (0 (E: @\ 3(TUT'), F)) ~ Ky (€ (E; D), F))

foralli € {0,1}, where K denotes the K-theory associated to T, E, f, and (Cy)nen. If in
addition T has the same property as T then

R (¢ (B: D(D).F)) ~ K (¢ (E: 5(I"),F)) .

By our hypotheses,
® (% (E; Q\(TUI),F)) =6 (E: @\ S(TUl'),F) ,
O(¢ (E:T,F)~% (E;9(),F), @®(¢(E:T,F))~%(E:0I)F),
so by Proposition 9.2.6 b) and Theorem 9.1.3,
Ki (6o (E: Q\O(TUT"),F)) = K; (¢ (E: Q\ (TUI'),F)) ~

~Kip1 (¢ (E;T,F)) = Kiy1 (€ (E; D), F)) .

If the supplementary hypothesis is fulfilled then by Proposition 9.2.6 ¢) and Theorem
9.1.3,

COROLLARY 9.2.8 Assume E =% (I,T).
a) If 01, 65, 05, 04 € R such that 0) < 6, < 01 +21, 03 < 04 < 03+ 27 then
Ki<f€<E;{el’9 ‘ 6, <0< 92},F)) ~

k(o5 (| oz0<ar)

forevery i€ {0,1}.
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b) Let 0,6, € IR, 6 < 6, < 0y + 21 and let I be a closed set of
T\{eie ’ 6 <0< 91+27r}
such that ¢ € T and ¢! ¢ T if €% £ €%, Then
Ki(%o (E;T\I,F)) = K;11(€ (E; T,F))
for every i € {0,1}. Moreover

K1 (€ (E; {1},F)T  if  Fis finite

K@ (EM\LF)~ Ny k. (4(E:{1},F)) if F is infinite
nelN

c) If 'y, Iy are closed sets of T, not equal toM and such that their cardinal numbers
are equal if they are finite then
Ki(€ (E;T1,F)) = K;(€ (E; T2, F))

forallie {0,1}.

a) We may assume 0; < 63 < 0; +27. Put Q' :=[6;,sup (61,65)], E' := € (Q/,C),
B:Q —T, a— e,
0:E—E, x——xo00.

Since it is possible to find an f’ € Z(T,E’) and a (C),),ew € [ E, with the desired
nelN
properties, we get

K; (% (E; { e ( 0 <0< 92},F)) ~K; (Cg (E; {ei93},F)) .

by Corollary 9.2.7. Thus

Ki(%(E;{e"" ‘ 63§6§64},F)> ,(%(E (ei®]), F))
)

K,-(%(E-{ ’9)el<9<92},F)
zKi(%(E'{ ’9‘93<9<94},F>)

b) If we put Q' := [0y, 6, +27x], E' := € (Q,0),

B:Q —T, a— %,

Science Publishing Group 265



Chapter 9 Variation of the Parameters

¢ E—E', x—x00,

then the first assertion follows from Corollary 9.2.7. If T" is finite then the last assertion

follows now from a) (and Corollary 6.2.10 b) and Proposition 7.3.1 b)).

Assume now I infinite. Then Qg :=T\T is the union of a countable set of open
intervals. Let Z be the set of finite such intervals ordered by inclusion and for every
O € E let Qg be the union of the intervals of ® and ' :=T\ Q. By the above,

Ki(%o(E;T\To,F)) ~ Ki1(€ (E; {1},F))°

for every ® € E. We get an inductive system of E-modules with 6, (E;T\I,F) as
inductive limit. By Theorem 6.2.12 and Theorem 7.3.6, K;(%p (E;T\TI,F)) is the
inductive limit of K;(%p(E;T\I'e,F)) for ® running through E, which proves the

assertion.
c¢) follows from b). [ |

Remark. Let & and O; be the group homomorphisms from the six-term sequence

associated to the exact sequence in g
0— %6 (E;I\I',F) — ¢ (E;T,F) — % (E;T,F) —0.
Then & and &; do not coincide with the group isomorphism
Ki(%o (E;T\T,F)) =~ K;11(¢ (E; [,F))

from Corollary 9.2.8 b).

COROLLARY 9.2.9 IfQ is a compact space such that E = € (Q xT,T) then
Ki(6o (E: Qx (M\{1}),F)) = Kiy1 (¢ (E; Q x {1}, F))
foreveryie{0,1}. [ |
COROLLARY 9.2.10 If the spectrum of E is 1B, for some n € IN then
Ki(% (E: 1B, \ {0}, F)) = {0} and
Ki(%o(E; { ¢ e R" | 0 < [|ex|| <1}, F)) ~ Ki11 (€ (E; Sp1, F))

Sorevery i € {0,1}. [ |

266 Science Publishing Group



9.2 Changing f

COROLLARY 9.2.11 Let (kj)jc; be a finite family in IN, Q' the topological sum of the
family of balls (IBkj) jes, and Q the compact space obtained from Q' by identifying the
centers of theses balls. If ® denotes the point of Q obtained by this identification and S
denotes the union of (Sk;—1) jes in Qand if E = ¢ (Q,C) then

Ki (6o (E: Q\{0},F)) ={0},
Ki(6o (E; (Q\ ({0} US),F)) = K1 (¢ (E: S,F))
Soreveryie{0,1}.
If we denote by ¥ : Q' — Q the quotient map, by I' the subset of Q' formed by

the centers of the balls (IBy,)jes, and by I the union of (Sg;-1)je; (I" C Q') then the
assertions follow from Proposition 9.2.6 b), ¢) and Corollary 9.2.7. [

LEMMA 9.2.12 Let S be a finite group, g € % (S,E), and Q the spectrum of E.
a) If there is an wy € Q and a family (0(s,t))s:es of selfadjoint elements of E such
that
6(r,5)+0(rs,t) = 0(r,5) +0(s,1),  g(s,1) =€) (g(s,1)(an))

Sfor all r,s,t € S then there is a A € A(S,C) with (g6A)(s,t) = g(s,t)(wy) for all
s,t €S.

b) If Q is totally disconnected then there is a A € A(S,E) such that

((g2)(s,1))(Q)

is finite for all s,t € S.

a) For every u € [0,1] put
gu:SXS—UnE, (s,1)—s e (g(s,1)(ap)) -

Then
[071] —>ﬁ\(S,E), Ur—r8u
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is a continuous map with g; = g and go(s,7) = g(s,7) (@) for all s,¢ € S. By Lemma 9.2.4
a),b), there are

O=uy<u <--<wup_1<u=1

and a family (4;) jew, in A(S,C) such that g, | = g.;64; for every j € INk. We prove by
induction that

k
8wy = gH 61/
=l

J
for all I € INg. This is obvious for / = k. Assume the identity holds for / € INy, / > 1.
Then

k k
g H 52’] = (gnal]> 62’1—1 = gul,laz'l—l = gul,za
j=I-1 =i

which finishes the proof by induction. If we put

k
A:=]]A € A(S.D)
j=1

then by the above

k
g6A =g[[64 =20
=1

J

b) Let ay € Q. Since Q is totally disconnected and S is finite, by continuity, there is a
clopen neighborhood Qg of @y and a family (6(s,#))sses in ReG (Qo,C) such that

0(r,5)+0(rs,1) = O(r,st) +0(s,1),  g(s,1)[Q0 = ) (g(s,1)(ay))
for all r,s,¢ € S. By a), there is a A € A(S,C) with
((¢1€20)84)(s,1) = g(s,1)(an)
for all s,t € S.

The assertion follows now from the fact that there is a finite partition (Q;) jc; of Q with

clopen sets such that ; possesses the property of the above € for every j € J. [ |

PROPOSITION 9.2.13 If the spectrum of E is totally disconnected then there is a A €
A(T,E) such that ((fOA)(s,t))(Q) is finite for all s,t € T.
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By Lemma 9.2.12 b), for every m € IN there is a A4, € A(S,,E) such that
((gmOAm)(s,1))(Q) is finite for all s,7 € S,,. If we put

A:T—UnE, tr—2A,() if t€S,

then A has the desired properties. [

PROPOSITION 9.2.14 Assume that T, f, and (C,)ne Satisfy the conditions of
Example 5.0.4 and of its Remark 1 and that the spectrum Q of E is simply connected.

a) Thereisa A € A(T,E) such that (fOA)(s,t) €C foralls,;t € T.

b) IfK; (¢ (Q,C)) = {0} for the classical K, then K| (E) = {0} for the present theory.

a) follows from Lemma 9.2.12 a).

b) follows from a), Remark 1 of Example 5.0.4, and Proposition 7.1.10. [ |
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