
Part II

Projective K-theory





Throughout this part we use the following notation: T is a group, 1 is its neutral
element, K is the complex Hilbert space l2(T ), (Tn)n∈IN is an increasing sequence of
finite subgroups of T the union of which is T , T0 := {1}, E is a unital commutative
C*-algebra, and f is a Schur E-function for T (Definition 5.0.1).

In the usual K-theory the orthogonal projections (used for K0) and the unitaries (used
for K1) are identified with elements of the square matrices, which is not a very elegant
procedure from the mathematical point of view, but is justified as a very efficient
pragmatic solution. It seems to us that in the present more complicated construction the
danger of confusion produced by these identifications is greater and we decided to
separate these three domains. Unfortunately this separation complicates the presentation
and the notation. Moreover, we also do identifications! In general the stability does not
hold. We present in Theorem 6.3.3 (as an example) some strong conditions under which
stability holds for K0.

For projective representations of groups we use [2] (but the groups will be finite here)
and for the K-theory we use [4], the construction of which we follow step by step. In the
sequel we give a list of notation used in this Part.

1) We put for every involutive algebra F ,

Pr F :=
{

P ∈ F | P = P∗ = P2}
and for every A⊂ F ,

Ac := { x ∈ F | y ∈ A =⇒ xy = yx} .

2) We denote for every unital involutive algebra F by 1F its unit and set

Un F := {U ∈ F | UU∗ =U∗U = 1F } .

3) If F is a unital C*-algebra and U,V ∈Un F then we denote by U ∼h V the assertion
U and V are homotopic in Un F and put

Un0 F := {U ∈Un F | U ∼h 1F } .

Moreover GL(F) denotes the group of invertible elements of F and GL0(F) the
elements of GL(F) which are homotopic to 1F in GL(F).



4) If F is a unital C*-algebra and G is a unital C*-subalgebra of F then we denote by
UnG F the set of elements of Un F which are homotopic to an element of Un G

in Un F and by GLG(F) the set of elements of GL(F) which are homotopic to an
element of GL(G) in GL(F).

5) If Ω is a topological space, F a C*-algebra, and A⊂ F then we put

C (Ω,A) := { X ∈ C (Ω,F) | ω ∈Ω =⇒ X(ω) ∈ A} .

6) Hilbert E-C*-algebra ([1] Definition 5.6.1.4).

7) LE(H) ([1] Definition 5.6.1.7).
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DEFINITION 5.0.1 Let S be a group and let 1 be its neutral element. A Schur E-
function for S is a map

f : S×S−→Un E

such that f (1,1) = 1E and

f (r,s) f (rs, t) = f (r,st) f (s, t)

for all r,s, t ∈ T . We denote by F (S,E) the set of Schur E-functions for S.

Schur functions are also called normalized factor set or multiplier or two-co-cycle (for
S with values in Un E) in the literature.

DEFINITION 5.0.2 Let F be an full E-C*-algebra and n ∈ IN∗. We put for every t ∈ Tn,
ξ ∈ FTn = F⊗ l2(Tn), and x ∈ F ,

Vtξ :=V F
t ξ : Tn −→ F , s 7−→ f (t, t−1s)ξ (t−1s) ,

x⊗ idK : FTn −→ FTn , ξ 7−→ (xξs)s∈Tn ,

so we have

(x⊗ idK)Vtξ : Tn −→ F , s 7−→ f (t, t−1s)xξ (t−1s) .

We define

Fn :=

{
∑

t∈Tn

(Xt ⊗ idK)Vt

∣∣∣∣∣ (Xt)t∈Tn ∈ FTn

}
.

If F
ϕ−→ G is a morphism in CE then we put

ϕn : Fn −→ Gn , X 7−→ ∑
t∈Tn

((ϕXt)⊗ idKn)Vt .

Fn is a full E-C*-subalgebra of LF(FTn) (Proposition 4.1.7 b), [2] Theorem 2.1.9 h),
k)), so 1Fn = 1E , and ϕn is an E-C*-homomorphism, injective or surjective if ϕ is so
([2] Corollary 2.2.5). Moreover Fm is canonically a full E-C*-subalgebra of Fn for every
m ∈ IN∗, m < n ([2] Proposition 2.1.2). For every n ∈ IN, Fn×Gn ≈ (F×G)n.

DEFINITION 5.0.3 We fix in Part II a sequence (Cn)n∈IN ∈ ∏
n∈IN

En, put

An :=C∗nCn , Bn :=CnC∗n ,
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and assume An, Bn ∈ Pr En, An+Bn = 1E = 1En , and Cn ∈ (En−1)
c for every n∈ IN (where

we used the inclusion En−1 ⊂ En in the last relation).

From
An = An(An +Bn) = A2

n +AnBn = An +AnBn ,

Cn =Cn(An +Bn) =CnAn +CnBn =Cn +C2
nC∗n

we get AnBn =C2
n = 0 for every n ∈ IN.

We have Cn ∈ (Fn−1)
c for every n ∈ IN and for every full E-C*-algebra F (where we

used the inclusion Fn−1 ⊂ Fn).

DEFINITION 5.0.4 Let (Sm)m∈IN be a sequence of finite groups and (kn)n∈IN a strictly

increasing sequence in IN such that Tn =
kn
∏

m=1
Sm for all n ∈ IN. We identify Sm with a

subgroup of T for every m ∈ IN. Assume that for every m ∈ IN there is a gm ∈F (Sm,E)

such that
f (s, t) = ∏

m∈IN
gm(sm, tm)

for all s, t ∈ T . For every n ∈ IN let m ∈ IN, kn−1 < m≤ kn, let χ : ZZ2 × ZZ2 −→ Sm be an
injective group homomorphism, and β1,β2 ∈Un E. We put

a := χ(1,0) , b := χ(0,1) , α1 := f (a,a) , α2 := f (b,b) ,

Cn :=
1
2
((β1⊗ idK)V f

a +(β2⊗ idK)V
f

b ) .

If f (a,b) = − f (b,a) = 1E and α1β 2
1 +α2β 2

2 = 0 then (Cn)n∈IN fulfills the conditions of
Axiom 5.0.3.

The assertion follows from [2] Theorem 2.2.18 a), b).

Remark 1. If E = IC, Sm = ZZ2 × ZZ2 , and km = m for every m ∈ IN then (by [2]
Proposition 3.2.1 c) and [2] Corollary 3.2.2 d)) we may choose (Cn)n∈IN in such a way
that the corresponding K-theory coincides with the classical one.

Remark 2. Denote by Tn the set of permutations p of IN such that
{ j ∈ IN | p( j) 6= j} ⊂ IN4n so T is the set of permutations p of IN such that
{ j ∈ IN | p( j) 6= j} is finite. This example shows that the given conditions for Tn in
Example 5.0.4 are not automatically fulfilled.
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6.1 K0 for CE

Throughout this section F denotes a full E-C*-algebra.

PROPOSITION 6.1.1 Let n ∈ IN.

a) An, Bn ∈ (Fn−1)
c (where we used the inclusion Fn−1 ⊂ Fn).

b) AnFnAn is a unital C*-algebra with An as unit.

c) The map

ρ̄
F
n : Fn−1 −→ Fn , X 7−→ AnX = XAn = AnXAn =C∗nXCn

(where we used the inclusion Fn−1 ⊂ Fn) is an E-linear injective

C*-homomorphism.

Only the injectivity of ρ̄F
n needs a proof. Let X ∈ Fn−1 with ρ̄F

n X = 0. Then

C∗nCnX = 0 , XCn =CnX = 0 ,

XBn = XCnC∗n = 0 , X = X(An +Bn) = 0 .

Remark. ρ̄F
n is not unital since ρ̄F

n 1E = An.

DEFINITION 6.1.2 We put for all m,n ∈ IN, m < n,

ρ
F
n,m := ρ̄

F
n ◦ ρ̄

F
n−1 ◦ · · · ◦ ρ̄

F
m+1 : Fm −→ Fn .

Then {(Fn)n∈IN, (ρ
F
n,m)n,m∈IN} is an inductive system of full E-C*-algebras with injective

E-linear (but not unital) maps. We denote by {F→, (ρF
n )n∈IN} its algebraic inductive

limit. F→ is an involutive (but not unital) algebra endowed with the structure of an

algebraic E-C*-algebra, ρF
n is injective and E-linear for every n ∈ IN, and (ImρF

n )n∈IN

is an increasing sequence of involutive subalgebras and algebraic E-C*-subalgebras of

F→ the union of which is F→. We put for every X ∈ Fn,

X→ := X→n := XF
→n := ρ

F
n X ,
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and

1→n := 1F
→n := ρ

F
n 1Fn = ρ

F
n 1E ,

F→n := Imρ
F
n .

In particular

(An)→ = ρ
F
n An = 1→,n−1, (Bn)→ = ρ

F
n Bn, (Cn)→ = ρ

F
n Cn .

We put

Pr F→ :=
{

P ∈ F→ | P = P∗ = P2}= ⋃
n∈IN

(Pr F→n) .

For P,Q∈Pr F→ we put P∼0 Q if there is an X ∈F→ with X∗X =P, XX∗=Q (in this case

there is an n ∈ IN such that P,Q,X ∈ F→n); ∼0 is the Murray - von Neumann equivalence

relation, which we shall use also in the case of C*-algebras. For every P ∈ Pr F→ we

denote by Ṗ its equivalence class in Pr F/∼0.

Often we shall identify Fn with F→n by using ρF
n . By this identification F→n is a full

E-C*-algebra with 1→n as unit.

F→ is also endowed with a C*-norm and its completion in this norm is the C*-inductive
limit of the above inductive system, but we shall not use this supplementary structure in
the sequel.

PROPOSITION 6.1.3 If n ∈ IN and P ∈ Pr F→,n−1 then

P = (An)→P∼0 (Bn)→P = (Cn)→P(Cn)
∗
→ .

We have
((Cn)→P)∗((Cn)→P) = P(Cn)

∗
→(Cn)→P = (An)→P ,

((Cn)→P)((Cn)→P)∗ = P(Cn)→(Cn)
∗
→P = (Bn)→P ,

so (An)→P∼0 (Bn)→P.

PROPOSITION 6.1.4 For every finite family (Pi)i∈I in Pr F→ there is a family (Qi)i∈I in

Pr F→ such that Pi ∼0 Qi for every i ∈ I and QiQ j = 0 for all distinct i, j ∈ I.
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We prove the assertion by complete induction with respect to Card I. Let i0 ∈ I and put
J := I \ {i0}. We may assume, by the induction hypothesis, that there is an n ∈ IN with
Pi ∈ Pr F→,n−1 for all i ∈ I and PiPj = 0 for all distinct i, j ∈ J. By Proposition 6.1.3,

Pi0 = (An)→Pi0 ∼0 (Cn)→Pi0(Cn)
∗
→ =: Qi0 ,

and
Qi0Pj = (Cn)→Pi0(Cn)

∗
→(An)→Pj = (Cn)→Pi0(C

∗
nAn)→Pj = 0

for all j ∈ J.

PROPOSITION 6.1.5 Let P,Q ∈ Pr F→.

a) If P′,P′′,Q′,Q′′ ∈ Pr F→ such that

P∼0 P′ ∼0 P′′, Q∼0 Q′ ∼0 Q′′, P′Q′ = P′′Q′′ = 0

then

P′+Q′ ∼0 P′′+Q′′ .

We put

Ṗ⊕ Q̇ :=
˙︷ ︸︸ ︷

P′+Q′ .

b) Pr F→/∼0 endowed with the above composition law ⊕ is an additive semi-group

with 0̇ as neutral element. We denote by K0(F) its associated Grothendieck group

and by

[ · ]0 : Pr F→ −→ K0(F)

the Grothendieck map ([4] 3.1.1).

c) K0(F) = { [P]0− [Q]0 | P,Q ∈ Pr F→ }.

d) For every a ∈ K0(F) there are P,Q ∈ Pr F→ and n ∈ IN such that

P = P(An)→, Q = Q(Bn)→, a = [P]0− [Q]0 .

a) Let X ,Y ∈ F→ with

X∗X = P′, XX∗ = P′′, Y ∗Y = Q′, YY ∗ = Q′′ .
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Then
0 = P′Q′ = X∗XY ∗Y, 0 = P′′Q′′ = XX∗YY ∗

so
XY ∗ = X∗Y = 0, (X +Y )∗(X +Y ) = X∗X +Y ∗Y = P′+Q′ ,

(X +Y )(X +Y )∗ = XX∗+YY ∗ = P′′+Q′′ , P′+Q′ ∼0 P′′+Q′′ .

b) and c) follow from a) and Proposition 6.1.4.

d) follows from c) and Proposition 6.1.3.

COROLLARY 6.1.6 The following are equivalent for all n ∈ IN and P,Q ∈ Pr F→n.

a) [P]0 = [Q]0.

b) There is an R ∈ Pr F→ such that

PR = QR = 0 , P+R∼0 Q+R .

c) There is an m ∈ IN, m > n+1, such that

P+(Bm)→ ∼0 Q+(Bm)→

or (by identifying Fm with F→m)(
m

∏
i=n+1

Ai

)
P+

(
1E −

m

∏
i=n+1

Ai

)
∼0

(
m

∏
i=n+1

Ai

)
Q+

(
1E −

m

∏
i=n+1

Ai

)
.

a⇒ b follows from Proposition 6.1.4 (and from the definition of the Grothendieck
group).

b⇒ c. We may assume R ∈ F→,m−1 for some m > n+1. By Proposition 6.1.3,

P+(Bm)→R∼0 P+R∼0 Q+R∼0 Q+(Bm)→R ,

so
P+(Bm)→ = P+(Bm)→R+((Bm)→− (Bm)→R)∼0

∼0 Q+(Bm)→R+((Bm)→− (Bm)→R) = Q+(Bm)→ .
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6.1 K0 for CE

It follows(
m

∏
i=n+1

Ai

)
P+

(
1E −

m

∏
i=n+1

Ai

)
= ρ

F
m,nP+Bm +

(
Am−

m

∏
i=n+1

Ai

)
∼0

∼0 ρ
F
m,nQ+Bm +

(
Am−

m

∏
i=n+1

Ai

)
=

(
m

∏
i=n+1

Ai

)
Q+

(
1E −

m

∏
i=n+1

Ai

)
.

c⇒a is trivial.

COROLLARY 6.1.7 If for every n ∈ IN and P ∈ Pr F→n there is an m ∈ IN, m > n+1,

such that P+(Bm)→ ∼0 1E then K0(F) = {0}.

Let P,Q ∈ Pr F→. By our hypothesis there is an m ∈ IN such that P+(Bm)→ ∼0 Q+

(Bm)→. By Corollary 6.1.6 c⇒ a, [P]0 = [Q]0. Thus by Proposition 6.1.5 c), K0(F)= {0}.

COROLLARY 6.1.8 K0(E) 6= {0}.

Assume K0(E) = {0}. Then [1E ]0 = [0]0, so by Corollary 6.1.6 a⇒ c, there is an n∈ IN
such that

1E ∼0 1E −
n

∏
i=1

Ai .

Let ω be a point of the spectrum of E. Since En(ω) is a product of square matrices the
above relation leads to a contradiction by using the trace function.

PROPOSITION 6.1.9 Let G be an additive group and ν : Pr F→→ G a map such that

1) P,Q ∈ Pr F→, PQ = 0 =⇒ ν(P+Q) = ν(P)+ν(Q).

2) P,Q ∈ Pr F→, P∼0 Q =⇒ ν(P) = ν(Q).

Then there is a unique group homomorphism µ : K0(F)→ G such that µ[P]0 = ν(P) for

every P ∈ Pr F→.
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By 2), ν is well-defined on Pr F→/∼0 and by 1) and Proposition 6.1.5 a),b), ν is an
additive map on Pr F→/∼0. By 2) and Corollary 6.1.6 a⇒b, ν is well-defined on K0(F).
The existence and uniqueness of µ with the given properties follows now from Proposition
6.1.5 c).

PROPOSITION 6.1.10 Let F
ϕ−→ G be a morphism in CE .

a) For m,n ∈ IN, m < n, the diagram

Fm
ρF

n,m−−−−→ Fn

ϕm

y yϕn

Gm −−−−→
ρG

n,m

Gn

is commutative. Thus there is a unique E-linear involutive algebra homomorphism

ϕ→ : F→ −→ G→ with

ϕ→ ◦ρ
F
n = ρ

G
n ◦ϕn

for every n ∈ IN.

b) ϕ→ is injective or surjective if ϕ is so.

c) There is a unique group homomorphism K0(ϕ) : K0(F)−→ K0(G) such that

K0(ϕ)[P]0 = [ϕ→P]0

for every P ∈ Pr F→.

d) If ϕ is the identity map then K0(ϕ) is also the identity map.

e) If ϕ = 0 then K0(ϕ) = 0.

a) It is sufficient to prove the assertion for n = m+1. For X ∈ Fm,

ϕnρ̄
F
n X = ϕn(AnX) = AnϕnX = ρ̄

G
n ϕnX

(where we used the inclusion Fm ⊂ Fn).

b) follows from the fact that for every n ∈ IN, ϕn is injective or surjective if ϕ is so ([2]
Theorem 2.1.9 a))).
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c) By a) and Proposition 6.1.3, the map

Pr F→ −→ K0(G), P 7−→ [ϕ→P]0

possesses the properties from Proposition 6.1.9.

d) and e) are obvious.

COROLLARY 6.1.11 If F
ϕ−→ G

ψ−→ H are morphisms in CE then

(ψ ◦ϕ)→ = ψ→ ◦ϕ→, K0(ψ ◦ϕ) = K0(ψ)◦K0(ϕ) .

PROPOSITION 6.1.12

a) The maps

µ : F̌ −→ F , (α,x) 7−→ α + x ,

λ
′ : E −→ F̌ , α 7−→ (α,−α)

are E-C*-homomorphisms.

b)

µ ◦ ι
F = idF , ι

F ◦µ +λ
′ ◦π

F = idF̌ ,

K0(ι
F)◦K0(µ)+K0(λ

′)◦K0(π
F) = idK0(F̌) .

c)

0−→ K0(F)
K0(ι

F )−→ K0(F̌)
K0(π

F )
−→

K0(λ
F )

←−
K0(E)−→ 0

is a split exact sequence.

a) is easy to see.

b) For (α,x),(β ,y) ∈ F̌ ,

ι
F

µ(α,x) = (0,α + x), λ
′
π

F(α,x) = (α,−α) ,

(ιF
µ(α,x))(λ ′πF(β ,y)) = (0,α + x)(β ,−β ) = (0,0) ,

(ιF
µ +λ

′
π

F)(α,x) = (α,x)
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so ιF ◦µ +λ ′ ◦πF is a full E-C*-homomorphism and

ι
F ◦µ +λ

′ ◦π
F = idF̌ .

By a) and Corollary 6.1.11,

ι
F
→ ◦µ→+λ

′
→ ◦π

F
→ = idF̌→ .

By Proposition 6.1.10 c),d) and Corollary 6.1.11, for P ∈ Pr F̌→,

(K0(ι
F)◦K0(µ)+K0(λ

′)◦K0(π
F))[P]0 = K0(ι

F ◦µ)[P]0 +K0(λ
′ ◦π

F)[P]0 =

= [ιF
→µ→P]0 +[λ ′→π

F
→P]0 = [(ιF ◦µ +λ

′ ◦π
F)→P]0 = [P]0

so by Proposition 6.1.5 c),

K0(ι
F)◦K0(µ)+K0(λ

′)◦K0(π
F) = idK0(F̌) .

c) By b), Proposition 6.1.10 d),e), and Corollary 6.1.11,

K0(π
F)◦K0(ι

F) = K0(π
F ◦ ι

F) = 0 ,

K0(π
F)◦K0(λ

F) = K0(π
F ◦λ

F) = idK0(E) ,

K0(µ)◦K0(ι
F) = K0(µ ◦ ι

F) = idK0(F)

and so K0(ι
F) is injective. By b), for a ∈ K0(F̌),

a = K0(ι
F)K0(µ)a+K0(λ

′)K0(π
F)a .

Thus if a ∈ Ker K0(π
F) then a = K0(ι

F)K0(µ)a ∈ ImK0(ι
F), and so

Ker K0(π
F) = ImK0(ι

F).

6.2 K0 for ME

DEFINITION 6.2.1 Let F be an E-C*-algebra and consider the split exact sequence

0−→ F ιF
−→ F̌

πF
−→
λF
←−

E −→ 0

introduced in Definition 4.1.4. We put

K0(F) := Ker K0(π
F) .
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By Proposition 6.1.12 c), this definition does not contradict the definition given in
Proposition 6.1.5 b) for the case that F is an full E-C*-algebra .

K0({0}) = {0} since π{0} is bijective.

PROPOSITION 6.2.2 Let F
ϕ−→ G be a morphism in ME .

a) The diagram

F ιF
−−−−→ F̌ πF

−−−−→ E

ϕ

y yϕ̌ ‖

G −−−−→
ιG

Ǧ −−−−→
πG

E

is commutative.

b) The diagram

K0(F)
⊂−−−−→ K0(F̌)

K0(π
F )−−−−→ K0(E)

K0(ϕ)

y yK0(ϕ̌) ‖

K0(G) −−−−→
⊂

K0(Ǧ) −−−−→
K0(πG)

K0(E)

is commutative, where K0(ϕ) is defined by K0(ϕ̌).

c) If P ∈ Pr F→ then

K0(ϕ)[P]0 = [ϕ→P]0 .

d) K0(idF) = idK0(F).

e) If ϕ = 0 then K0(ϕ) = 0.

a) is obvious.

b) By a) and Corollary 6.1.11, the right part of the diagram is commutative. This
implies the existence (and uniqueness) of K0(ϕ).

c) By a), b), Proposition 6.1.10 a),c), and Corollary 6.1.11,

K0(ϕ)[P]0 = K0(ϕ̌)[ι
F
→P]0 = [ϕ̌→ι

F
→P]0 = [ιG

→ϕ→P]0 = [ϕ→P]0 .

d) and e) follow from c) and Proposition 6.1.5 c).
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COROLLARY 6.2.3 Let F
ϕ−→ G

ψ−→ H be morphisms in ME .

a) K0(ψ)◦K0(ϕ) = K0(ψ ◦ϕ).

b) If ϕ is an isomorphism then K0(ϕ) is also an isomorphism and

K0(ϕ)
−1 = K0(ϕ

−1) .

a) follows from Proposition 4.1.5 b), Corollary 6.1.11, and Proposition 6.2.2 b).

b) follows from a) and Proposition 6.2.2 d).

PROPOSITION 6.2.4 For every E-C*-algebra F,

K0(F) =
{
[P]0− [σF

→P]0
∣∣ P ∈ Pr F̌→

}
.

For P ∈ Pr F̌→, by Proposition 6.2.2 c) and Corollary 6.1.11 (since πF = πF ◦ σF ),

K0(π
F)[σF

→P]0 = [πF
→σ

F
→P]0 = [πF

→P]0 = K0(π
F)[P]0

so

[P]0− [σF
→P]0 ∈ Ker K0(π

F) = K0(F) .

Let a ∈ K0(F). By Proposition 6.1.5 d), there are Q,R ∈ Pr F̌→ and n ∈ IN such that

Q = Q(An)→ , R = R(Bn)→ , a = [Q]0− [R]0 .

Then

a = [Q(An)→]0 +[(Bn)→−R(Bn)→]0− ([R(Bn)→]0− [(Bn)→−R(Bn)→]0) =

= [Q(An)→+((Bn)→−R(Bn)→)]0− [(Bn)→]0 .

If we put

P := Q(An)→+((Bn)→−R(Bn)→)

then

a = [P]0− [(Bn)→]0 .
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By Proposition 6.2.2 c) and Corollary 6.1.11 (and Definition 4.1.4)

0 = K0(π
F)a = K0(π

F)[P]0−K0(π
F)[(Bn)→]0 = [πF

→P]0− [πF
→(Bn)→]0 ,

[σF
→P]0 = [λ F

→π
F
→P]0 = K0(λ

F)[πF
→P]0 = K0(λ

F)[πF
→(Bn)→]0 =

= [λ F
→π

F
→(Bn)→]0 = [σF

→(Bn)→]0 = [(Bn)→]0 ,

a = [P]0− [σF
→P]0 .

PROPOSITION 6.2.5 Let F be an full E-C*-algebra and n ∈ IN.

a) Cn +C∗n ∈Un0 En.

b) For X ,Y ∈ Fn−1,

(Cn +C∗n)(AnX +BnY )(Cn +C∗n) = BnX +AnY .

c) If U,V ∈Un Fn−1 then AnU +BnV ∈Un Fn.

d) If U ∈Un Fn−1 then AnU +Bn ∈Un Fn and AnU +BnU∗ ∈Un0 Fn.

a) From
(Cn +C∗n)(Cn +C∗n) = Bn +An = 1E

it follows that Cn+C∗n is unitary. Being selfadjoint, its spectrum is contained in {−1,+1}
and so it belongs to Un0 En ([4] Lemma 2.1.3 (ii)).

b) We have

(Cn +C∗n)(AnX +BnY )(Cn +C∗n) = (CnX +C∗nY )(Cn +C∗n) = BnX +AnY .

c) We have
(AnU +BnV )(AnU +BnV )∗ = An +Bn = 1E ,

(AnU +BnV )∗(AnU +BnV ) = An +Bn = 1E .

d) By c), AnU +Bn ∈Un Fn. By b),

(Cn +C∗n)(AnU∗+Bn)(Cn +C∗n) = BnU∗+An ,
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so it follows from a), that AnU∗+Bn is homotopic to BnU∗+An in Un Fn and so

AnU +BnU∗ = (AnU +Bn)(An +BnU∗)

is homotopic in Un Fn to

(AnU +Bn)(AnU∗+Bn) = An +Bn = 1E ,

i.e. AnU +BnU∗ ∈Un0 Fn.

PROPOSITION 6.2.6 Let F be a full E-C*-algebra, n ∈ IN, P,Q ∈ Pr Fn, and X ∈ Fn

with X∗X = P, XX∗ = Q. Then there is a U ∈Un0 Fn+2 with

U(An+2An+1P)U∗ = An+2An+1Q , i.e. U→P→U∗→ = Q→ .

We have X(1E −P) = (1E −Q)X = 0. Put

V := An+1X +Cn+1(1E −P)+C∗n+1(1E −Q)+Bn+1X∗ (∈ Fn+1) .

Then

V ∗ = An+1X∗+C∗n+1(1E −P)+Cn+1(1E −Q)+Bn+1X ,

VV ∗ = An+1Q+Bn+1(1E −P)+An+1(1E −Q)+Bn+1P = An+1 +Bn+1 = 1E ,

V ∗V = An+1P+An+1(1E −P)+Bn+1(1E −Q)+Bn+1Q = An+1 +Bn+1 = 1E

so V ∈Un Fn+1. Moreover

VAn+1P = An+1X , An+1XV ∗ = An+1Q .

Put

U := An+2V +Bn+2V ∗ .

By Proposition 6.2.5 d), U ∈Un0 Fn+2. We have

U(An+2An+1P)U∗ = (An+2V +Bn+2V ∗)An+2An+1P(An+2V ∗+Bn+2V ) =

= An+2An+1X(An+2V ∗+Bn+2V ) = An+2An+1Q .

PROPOSITION 6.2.7 Let F
ϕ−→ G be a morphism in ME and a ∈ Ker K0(ϕ).
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a) There are n ∈ IN, P ∈ Pr F̌→n, and U ∈Un0 Ǧ→,n+2 such that

a = [P]0− [σF
→P]0 U(ϕ̌→P)U∗ = σ

G
→ϕ̌→P .

b) If ϕ is surjective then there is a P ∈ Pr F̌→ such that

a = [P]0− [σF
→P]0, ϕ̌→P = σ

G
→ϕ̌→P .

a) By Proposition 6.2.4, there are m ∈ IN and Q ∈ Pr F̌→,m−1 such that

a = [Q]0− [σF
→Q]0 .

Since ϕ̌ ◦σF = σG ◦ ϕ̌ , by Proposition 6.1.10 c) and Corollary 6.1.11,

0 = K0(ϕ)a = [ϕ̌→Q]0− [ϕ̌→σ
F
→Q]0 = [ϕ̌→Q]0− [σG

→ϕ̌→Q]0 .

By Corollary 6.1.6 a⇒c, there is an n ∈ IN, n > m, such that

ϕ̌→Q+(Bn)→ ∼0 σ
G
→ϕ̌→Q+(Bn)→ = σ

G
→(ϕ̌→Q+(Bn)→) .

Put
P := Q+(Bn)→ ∈ Pr F̌→n .

Then
[P]0− [σF

→P]0 = [Q]0 +[(Bn)→]0− [σF
→Q]0− [(Bn)→]0 = a ,

[ϕ̌→P]0− [σG
→ϕ̌→P]0 = [ϕ̌→Q]0 +[(Bn)→]0− [σG

→ϕ̌→Q]0− [(Bn)→]0 = 0 .

By Corollary 6.1.6 a⇒b and Proposition 6.2.6, there is a U ∈Un0 Ǧ→,n+2 with

U(ϕ̌→P)U∗ = σ
G
→ϕ̌P .

b) By a), there are n ∈ IN, n > 2, Q ∈ Pr F̌→,n−2, and U ∈Un0 Ǧ→n such that

a = [Q]0− [σF
→Q]0, U(ϕ̌→Q)U∗ = σ

G
→ϕ̌→Q .

Since ϕn : F̌n −→ Ǧn is surjective, by [4] Lemma 2.1.7 (i), there is a V ∈Un F̌→n with
ϕ̌nV =U . We put

P :=V QV ∗ ∼0 Q

so
a = [P]0− [σF

→P]0
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and

ϕ̌→P = (ϕ̌→V )(ϕ̌→Q)(ϕ̌→V ∗) =U(ϕ̌→Q)U∗ = σ
G
→ϕ̌→Q ,

σ
G
→ϕ̌→P = σ

G
→ϕ̌→Q = ϕ̌→P .

PROPOSITION 6.2.8 Let

0−→ F
ϕ−→ G

ψ−→ H −→ 0

be an exact sequence in ME .

a) ϕ̌→ is injective.

b) The following are equivalent for all X ∈ Ǧ→:

b1) X ∈ Im ϕ̌→.

b2) ψ̌→X = σH
→ψ̌→X.

c) K0(F)
K0(ϕ)−→ K0(G)

K0(ψ)−→ K0(H) is exact.

a) ϕ̌ is injective (Proposition 4.1.5 a)) and the assertion follows from Proposition 6.1.10
b).

b1⇒ b2 follows from ψ ◦ϕ = 0.

b2⇒ b1. Let n ∈ IN such that X ∈ Ǧ→n, which we identify with Ǧn. Then X has the
form

X = ∑
t∈Tn

((αt ,Yt)⊗ idK)V Ǧ
t ,

where (αt ,Yt) ∈ Ǧ for every t ∈ Tn, and so by b2),

∑
t∈Tn

((αt ,ψYt)⊗ idK)V Ȟ
t = ψ̌nX = σ

H
n ψ̌nX = ∑

t∈Tn

((αt ,0)⊗ idK)V Ȟ
t .

It follows ψYt = 0 for every t ∈ Tn ([2] Theorem 2.1.9 a)). Thus for every t ∈ Tn there is
a Zt ∈ F with ϕZt = Yt and we get

X = ∑
t∈Tn

((αt ,ϕZt)⊗ idK)V Ǧ
t =
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= ϕ̌n

(
∑

t∈Tn

((αt ,Zt)⊗ idK)V F̌
t

)
∈ Im ϕ̌n ⊂ Im ϕ̌→ .

c) By Corollary 6.2.3 a) and Proposition 6.2.2 e),

K0(ψ)◦K0(ϕ) = K0(ψ ◦ϕ) = 0

so ImK0(ϕ) ⊂ Ker K0(ψ). Let a ∈ Ker K0(ψ). By Proposition 6.2.7 b), there is a P ∈
Pr Ǧ→ such that

a = [P]0− [σG
→P]0, ψ̌→P = σ

H
→ψ̌→P .

Then P has the form
P = ∑

t∈Tn

((αt ,Xt)⊗ idK)V Ǧ
t

for some n ∈ IN with (αt ,Xt) ∈ E×G for every t ∈ Tn, where we identified Ǧn with Ǧ→n.
We get

∑
t∈Tn

((αt ,ψXt)⊗ idK)V Ȟ
t = ψ̌→P = σ

H
→ψ̌→P = ∑

t∈Tn

((αt ,0)⊗ idK)V Ȟ
t .

Thus ψXt = 0 ([2] Theorem 2.1.9 a)) and there is an Yt ∈ F with ϕYt = Xt for every t ∈ Tn.
We put

Q := ∑
t∈Tn

((αt ,Yt)⊗ idK)V F̌
t ∈ Pr F̌→

with the usual identification (ϕ̌ is an embedding !). Then

ϕ̌→Q = ∑
t∈Tn

((αt ,ϕYt)⊗ idK)V Ǧ
t = ∑

t∈Tn

((αt ,Xt)⊗ idK)V Ǧ
t = P

and by Proposition 6.2.2 c) (since ϕ̌ ◦σF = σG ◦ ϕ̌),

K0(ϕ)([Q]0− [σF
→Q]0) = [ϕ̌→Q]0− [ϕ̌→σ

F
→Q]0 =

= [ϕ̌→Q]0− [σG
→ϕ̌→Q]0 = [P]0− [σG

→P]0 = a .

Thus Ker K0(ψ)⊂ ImK0(ϕ), Ker K0(ψ) = ImK0(ϕ).

PROPOSITION 6.2.9 (Split Exact Theorem for K0) If

0−→ F
ϕ−→ G

ψ
−→
λ←−

H −→ 0
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is a split exact sequence in ME then

0−→ K0(F)
K0(ϕ)−→ K0(G)

K0(ψ)
−→

K0(λ )←−
K0(H)−→ 0

is also split exact. In particular the map

K0(F)×K0(H)−→ K0(G), (a,b) 7−→ K0(ϕ)a+K0(λ )b

is a group isomorphism and K0(F̌)≈ K0(E)×K0(F) for every E-C*-algebra F.

By Proposition 6.2.8 c), the second sequence is exact at K0(G). From

K0(ψ)◦K0(λ ) = K0(ψ ◦λ ) = K0(idH) = idK0(H)

(Corollary 6.2.3 a) and Proposition 6.2.2 d)) it follows that this sequence is (split) exact
at K0(H).

Let a ∈ Ker K0(ϕ). By Proposition 6.2.7 a), there are n ∈ IN, P ∈ Pr F̌→n, and U ∈
Un0 Ǧ→,n+2 such that

a = [P]0− [σF
→P]0, U(ϕ̌→P)U∗ = σ

G
→ϕ̌→P .

Put
V := (λ̌→ψ̌→U∗)U ∈Un Ǧ→,n+2 .

Then
ψ̌→V = (ψ̌→U∗)(ψ̌→U) = 1→,n+2, σ

H
→ψ̌→V = ψ̌→V .

By Proposition 6.2.8 b2 ⇒ b1, there is a W ∈ Un F̌→,n+2 with ϕ̌→W = V (ϕ̌ is an
embedding). We have

ϕ̌→(WPW ∗) =V (ϕ̌→P)V ∗ = (λ̌→ψ̌→U∗)U(ϕ̌→P)U∗(λ̌→ψ̌→U) =

= (λ̌→ψ̌→U∗)(σG
→ϕ̌→P)(λ̌→ψ̌→U) = λ̌→ψ̌→(U∗(σG

→ϕ̌→P)U) =

= λ̌→ψ̌→ϕ̌→P = σ
G
→ϕ̌→P = ϕ̌→σ

F
→P .

Since ϕ̌→ is injective (Proposition 6.2.8 a)),

P∼0 WPW ∗ = σ
F
→P, a = 0

and K0(ϕ) is injective.
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The last assertion follows since

0−→ F ιF
−→ F̌

πF
−→
λF
←−

E −→ 0

is a split exact sequence.

COROLLARY 6.2.10 Let F,G be E-C*-algebras.

a) If we put

ι1 : F −→ F×G , x 7−→ (x,0), π1 : F×G−→ F , (x,y) 7−→ x ,

ι2 : G−→ F×G , y 7−→ (0,y), π2 : F×G−→ F , (x,y) 7−→ y ,

then the sequences

0−→ K0(F)
K0(ι1)−→ K0(F×G)

K0(π2)−→
K0(ι2)←−

K0(G)−→ 0 ,

0−→ K0(G)
K0(ι2)−→ K0(F×G)

K0(π1)−→
K0(ι1)←−

K0(F)−→ 0

are split exact.

b) The map

K0(F)×K0(G)−→ K0(F×G), (a,b) 7−→ K0(ι1)a+K0(ι2)b

is a group isomorphism (Product Theorem for K0).

a) is easy to see.

b) follows from a) and Proposition 6.2.9.

THEOREM 6.2.11 (Homotopy invariance of K0)

a) If ϕ,ψ : F −→ G are homotopic morphisms in ME , then K0(ϕ) = K0(ψ).

b) If F
ϕ−→ G, G

ψ−→ F is a homotopy in ME then

K0(ϕ)◦K0(ψ) = idK0(G), K0(ψ)◦K0(ϕ) = idK0(F) .

Science Publishing Group 183



Chapter 6 The Functor K0

c) If F and G are homotopic E-C*-algebras then K0(F) and K0(G) are isomorphic.

d) If F is an E-C*-algebra such that idF is homotopic to

0F : F −→ F , x 7−→ 0

then F is homotopic to {0}.

e) If the E-C*-algebra F is homotopic to {0} then K0(F) = {0}.

a) Let

φs : F −→ G, s ∈ [0,1]

be a pointwise continuous path of morphisms in ME such that φ0 = ϕ, φ1 = ψ . Then

φ̌s : F̌ −→ Ǧ, s ∈ [0,1]

is a pointwise continuous path of morphisms in CE with φ̌0 = ϕ̌, φ̌1 = ψ̌ and for every
n ∈ IN,

(φ̌s)→n : (F̌)→n −→ (Ǧ)→n, s ∈ [0,1]

is a pointwise continuous path in CE with (φ̌0)→n = (ϕ̌)→n and (φ̌1)→n = (ψ̌)→n. For
every P ∈ Pr F̌→n,

[0,1]−→ Pr (Ǧ)→n, s 7−→ (φ̌s)→nP

is continuous so (by [4] Proposition 2.2.7)

K0(ϕ)[P]0 = [ϕ→P]0 = [ψ→P]0 = K0(ψ)[P]0

(Proposition 6.2.2 c)). By Proposition 6.2.4, K0(ϕ) = K0(ψ).

b) follows from a), Corollary 6.2.3 a), and Proposition 6.2.2 d).

c) follows from b).

d) If we put ϕ : F −→ {0} and ψ : {0} −→ F then ψ ◦ϕ = 0F is homotopic to idF and
ϕ ◦ψ is homotopic to id{0}, so F is homotopic to {0}.

e) follows from c).

We show now that K0 is continuous with respect to inductive limits.
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THEOREM 6.2.12 (Continuity of K0) Let {(Fi)i∈I , (ϕi j)i, j∈I} be an inductive system in

ME and let {F, (ϕi)i∈I} be its inductive limit in ME . By Corollary 6.2.3 a),

{(K0(Fi))i∈I , (K0(ϕi j))i, j∈I}

is an inductive system in the category of additive groups. Let {G , (ψi)i∈I} be its limit in

this category and let ψ : G −→ K0(F) be the group homomorphism such that ψ ◦ψi =

K0(ϕi) for every i ∈ I. Then ψ is a group isomorphism.

{(F̌i)i∈I , (ϕ̌i j)i, j∈I} is an inductive system in CE and by [2] Proposition 1.2.9 b),
{F̌ , (ϕ̌i)i∈I} may be identified with its inductive limit in CE . By[2] Proposition 2.3.5, for
every n ∈ IN, {((F̌i)→n)i∈I , ((ϕ̌i j)→n)i, j∈I} is an inductive system in CE and
{(F̌→n, ((ϕ̌i)→n)i∈I} may be identified with its inductive limit in CE .

Step 1 ψ is surjective

Let Q ∈ Pr (F̌)→n. By [5] L.2.2, there are i ∈ I and P ∈ Pr (F̌i)→n such that
‖(ϕ̌i)→nP−Q‖ < 1, so by [4] Proposition 2.2.4, (ϕ̌i)→nP ∼0 Q. By Proposition 6.2.2
b),c)

ψψi[P]0 = K0(ϕi)[P]0 = K0(ϕ̌i)[P]0 = [(ϕ̌i)→nP]0 = [Q]0 .

Since
Pr F̌→ =

⋃
n∈IN

Pr (F̌)→n ,

ψ is surjective.

Step 2 ψ is injective

Let a ∈ G with ψa = 0. Since G =
⋃

i∈I Im ψi, there is an i ∈ I and an ai ∈ K0(Fi) with
a = ψiai. There are n ∈ IN and P,Q ∈ Pr (F̌i)→n such that

ai = [P]0− [Q]0

(by Proposition 6.1.5 c)). By Proposition 6.2.2 c),

0 = ψa = ψψia = K0(ϕi)a = K0(ϕi)[P]0−K0(ϕi)[Q]0 =
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= [(ϕ̌i)→nP]0− [(ϕ̌i)→nQ]0 .

By Corollary 6.1.6 a⇒b, there is an R ∈ Pr (F̌i)→ such that

PR = QR = 0, P+R∼0 Q+R

and we get

a = [P]0 +[R]0− [Q]0− [R]0 = [P+R]0− [Q+R]0 = 0 .

6.3 Stability of K0

The stability of K0 holds only under strong supplementary hypotheses. We present
below such possible hypotheses, which we fix for this section. We shell give only a
sketch of the proof.

Let S be a finite group, χ : ZZ2 × ZZ2 −→ S an injective group homomorphism,

a := ω(1,0), b := ω(0,1), c := ω(1,1) ,

and g a Schur E-function for S such that

g(a,b) = g(a,c) = g(b,c) =−g(b,a) = 1E .

We put for every n ∈ IN,

Tn := Sn =
{

t ∈ SIN ∣∣ m ∈ IN, m > n⇒ tm = 1
}
,

T :=
⋃

n∈IN

Tn =
{

t ∈ SIN ∣∣ {n ∈ IN, tn 6= 1} is finite
}
,

f : T ×T −→ E , (s, t) 7−→ ∏
n∈IN

g(sn, tn) ,

n
s: IN−→ S , m 7−→

{
s if m = n

1 if m 6= n
,

for every s ∈ S, and

Cn :=
1
2
(V f

n
a
+V f

n
b
), An :=C∗nCn, Bn :=CnC∗n .
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Then f is a Schur E-function for T and the following hold for all s, t ∈ S and n ∈ IN:

f (
n
s,

n
t) = g(s, t) ,

n
t= 1 =⇒ V f

n
s

V f
n
t
=V f

n
t

V f
n
s
,

s ∈ Tn−1 =⇒ V f
s Vn

t
=Vn

t
V f

s ,

An =
1
2
(V f

1 +V f
n
c
) ∈ Pr En, Bn =

1
2
(V f

1 −V f
n
c
) ∈ Pr En ,

An +Bn =V f
1 = 1E ,

so the assumptions of Axiom 5.0.3 are fulfilled.

Remark. If χ is bijective and E = IC then the corresponding projective K-theory
coincides with the usual K-theory.

PROPOSITION 6.3.1 Let F be an full E-C*-algebra and m,n ∈ IN. We define

α := α
F
m,n : (Fm)n −→ Fm+n ,

β := β
F
m,n : Fm+n −→ (Fm)n ,

by

(αX)(s,t) := (Xt)s, ((βY )t)s := Y(s,t)

for every X ∈ (Fm)n, Y ∈ Fm+n, and (s, t) ∈ Sm× Sn = Sm+n, where the identification is

given by the bijective map

Sm×Sn −→ Sm+n, (s, t) 7−→ (s1, · · · ,sm, t1, · · · , tn) .

a) α and β are E-C*-isomorphisms and α = β−1.

b) αAn = Am+n.

c) The diagram

(Fm)n−1
αF

m,n−1−−−−→ Fm+n−1

ρ̄
Fm
n

y yρ̄F
m+n

(Fm)n −−−−→
αF

m,n

Fm+n

is commutative.
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It is obvious that α and β are E-linear and α ◦β = idFm+n , β ◦α = id(Fm)n . Thus α and
β are bijective and α = β−1.

For X ,Y ∈ (Fm)n and (s, t) ∈ Sm×Sn, by [2] Theorem 2.1.9 c),g),

(αX∗)(s,t) = ((X∗)t)s = ( f̃ (t)(Xt−1)∗)s = f̃ (s) f̃ (t)((Xt−1)s−1)∗ =

= f̃ ((s, t))(αX(s,t)−1)∗ = ((αX)∗)(s,t) ,

((αX)(αY ))(s,t) =

= ∑
(u,v)∈Sm×Sn

f ((u,v),(u−1s,v−1t))(αX)(u,v)(αY )(u−1s,v−1t) =

= ∑
(u,v)∈Sm×Sn

f (u,u−1s) f (v,v−1t)(Xv)u(Yv−1t)u−1s =

= ∑
v∈Sn

f (v,v−1t)(XvYv−1t)s =

=

(
∑

v∈Sn
f (v,v−1t)XvYv−1t

)
s = ((XY )t)s = (α(XY ))(s,t)

so α is a C*-homomorphism and the assertion follows.

b) follows from the definition of An and Am+n.

c) follows from b).

PROPOSITION 6.3.2 Let F
ϕ−→ G be a morphism in CE and m,n ∈ IN. With the

notation of Proposition 6.3.1 the diagram

(Fm)n
αF

m,n−−−−→ Fm+n

(ϕm)n

y yϕm+n

(Gm)n −−−−→
αG

m,n

Gm+n

is commutative.

For X ∈ (Fm)n and (s, t) ∈ Sm×Sn = Sm+n,

(ϕm+nα
F
m,nX)(s,t) = ϕ(αF

m,nX)(s,t) = ϕ(Xt)s =
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= (ϕmXt)s = (((ϕm)nX)t)s = (αG
m,n(ϕm)nX)(s,t)

so
ϕm+n ◦α

F
m,n = α

G
m,n ◦ (ϕm)n .

THEOREM 6.3.3 (Stability for K0) If F
ϕ−→ G is a morphism in ME and n ∈ IN then

K0(Fn)≈ K0(F), K0(Gn)≈ K0(G), K0(ϕn)≈ K0(ϕ) .

Remark. If (F∞,(ρ
F
n )n∈IN) and (G∞,(ρ

G
n )n∈IN) denote the inductive limits in ME of

the corresponding inductive systems ((Fn)n∈IN,(ρ
F
n,m)n,m∈IN) and ((Gn)n∈IN,(ρ

G
n,m)n,m∈IN)

then, with obvious notation,

K0(F∞)≈ K0(F), K0(G∞)≈ K0(G), K0(ϕ∞)≈ K0(ϕ) .
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7.1 Definition of K1

PROPOSITION 7.1.1 If F is a full E-C*-algebra and n ∈ IN then

τ̄
F
n : Un Fn−1 −→Un Fn , U 7−→ AnU +Bn

is an injective group homomorphism with

τ̄
F
n (UnEn−1 Fn−1)⊂UnEn Fn .

For U,V ∈Un Fn we put U ∼1 V if UV ∗,U∗V ∈Un En. ∼1 is an equivalence relation

and ∼h implies ∼1.

For U,V ∈Un Fn−1,
τ̄

F
n U∗ = AnU∗+Bn = (τ̄F

n U)∗ ,

(τ̄F
n U)(τ̄F

n V ) = (AnU +Bn)(AnV +Bn) = AnUV +Bn = τ̄
F
n (UV ) ,

(τ̄F
n U)(τ̄F

n U)∗ = (τ̄F
n U)∗(τ̄F

n U) = An +Bn = 1Fn ,

i.e. τ̄F
n is well-defined and it is a group homomorphism. If τ̄F

n U = 1Fn then

AnU +Bn = τ̄
F
n U = 1Fn = 1E = An +Bn, AnU = An ,

so by Proposition 6.1.1 c), U = 1Fn−1 = 1E and τ̄F
n is injective.

The other assertions are obvious.

DEFINITION 7.1.2 Let F be a full E-C*-algebra. We put for all m,n ∈ IN, m < n,

τ
F
n,m := τ̄

F
n ◦ τ̄

F
n−1 ◦ · · · ◦ τ̄

F
m+1 : Un Fm −→Un Fn .

Then {(Un Fn)n∈IN, (τn,m)m,n∈IN} is an inductive system of groups with injective maps.

We denote by {unF, (τF
n )n∈IN} its inductive limit. τF

n is injective for every n ∈ IN, so

(τF
n (Un Fn))n∈IN is an increasing sequence of subgroups of unF, the union of which is

unF. We put for every n ∈ IN and U ∈Un Fn,

Un F←n := τ
F
n (Un Fn), U← :=U←n :=UF

←n := τ
F
n U ,

1←n := 1F
←n := τ

F
n 1Fn (= τ

F
n 1E) .

(τF
n (UnEn Fn))n∈IN is an increasing sequence of subgroups of unF; we denote by unE F

their union.
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We often identify Un Fn with Un F←n.

PROPOSITION 7.1.3 For m,n ∈ IN, m < n, and U ∈Un Fm,

τ
F
n,mU =

(
n

∏
i=m+1

Ai

)
U +

(
1E −

n

∏
i=m+1

Ai

)
.

We prove this identity by induction with respect to n. The identity holds for n := m+1.
Assume it holds for n−1≥ m. Then

τ
F
n,mU = τ̄

F
n τ

F
n−1,mU = Anτ

F
n−1,mU +Bn =

= An

((
n−1

∏
i=m+1

Ai

)
U +

(
1E −

n−1

∏
i=m+1

Ai

))
+Bn =

=

(
n

∏
i=m+1

Ai

)
U +

(
1E −

n

∏
i=m+1

Ai

)
.

PROPOSITION 7.1.4 Let F be a full E-C*algebra.

a) If U,V ∈Un Fn−1 for some n ∈ IN then

τ̄
F
n (UV )∼h τ̄

F
n (VU) , τ̄

F
n (UVU∗)∼h τ̄

F
n (V ) .

b) unE F is a normal subgroup of un F and un F/unE F is commutative.

c) For all U,V ∈ un F,

UV ∗ ∈ unE F ⇐⇒U∗V ∈ unE F .

We put U ∼1 V if UV ∗ ∈ unE F. ∼1 is an equivalence relation.

a) By Proposition 6.2.5 a),b),

τ̄
F
n (UV ) = AnUV +Bn = (AnU +Bn)(AnV +Bn)∼h

∼h (AnU +Bn)(An +BnV ) = AnU +BnV ∼h AnV +BnU ∼h τ̄
F
n (VU) .

194 Science Publishing Group



7.1 Definition of K1

It follows

τ̄
F
n (UVU∗)∼h τ̄

F
n (U

∗UV ) = τ̄
F
n (V ) .

b) unE F is obviously a subgroup of un F . The other assertions follow from a).

c) Let q : un F → un F/unE F be the quotient map. If UV ∗ ∈ unE F then by b),

q(UV ∗) = q(U)q(V ∗) = q(V ∗)q(U) = q(V ∗U) ,

V ∗U ∈ unE F , U∗V = (V ∗U)∗ ∈ unE F .

DEFINITION 7.1.5 We denote for every E-C*-algebra F by K1(F) the additive group

obtained from the commutative group unF̌/unE F̌ (Proposition 7.1.4 b)) by replacing the

multiplication with the addition ⊕; by this the neutral element (which corresponds to 1E )

is denoted by 0. For every U ∈ unF̌ we denote by [U ]1 its equivalence class in K1(F).

Remark. Let F be a full E-C*-algebra . By Proposition 4.1.2 d), F̌ is isomorphic to
E×F , so in this case we may define K1 using F instead of F̌ (as we did for K0).

PROPOSITION 7.1.6 Let F
ϕ−→ G be a morphism in ME .

a) For m,n ∈ IN, m < n, the diagram

Un F̌m
τ F̌

n,m−−−−→ Un F̌n

ϕ̌m

y yϕ̌n

Un Ǧm −−−−→
τǦ

n,m

Un Ǧn

is commutative. Thus there is a unique group homomorphism

ϕ̌← : unF̌ −→ unǦ

such that

ϕ̌← ◦ τ
F̌
n = τ

Ǧ
n ◦ ϕ̌n

for every n ∈ IN.
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b) ϕ←(unE F̌)⊂ unE Ǧ; if ϕ is surjective then ϕ←(unE F̌) = unE Ǧ.

c) There is a unique group homomorphism

K1(ϕ) : K1(F)−→ K1(G)

such that

K1(ϕ)[U ]1 = [ϕ̌←U ]1

for every U ∈ unF̌.

d) K1(idF) = idK1(F).

e) K1({0}) = {0}.

a) It is sufficient to prove the assertion for n = m+1. For U ∈Un F̌m,

τ
Ǧ
n,mϕ̌mU = An(ϕ̌mU)+Bn = ϕ̌n(AnU +Bn) = ϕ̌nτ

F̌
n,mU .

b) Since ϕ̌n(UnEn F̌n) ⊂UnEn Ǧn for every n ∈ IN, it follows ϕ←(unE F̌) ⊂ unE Ǧ. If
ϕ is surjective then by [4] Lemma 2.1.7 (iii), we may replace the above inclusion relation
by =.

c) follows from a) and b).

d) is obvious.

e) follows from un E = unE E.

DEFINITION 7.1.7 An E-C*-algebra F is called K-null if

K0(F) = K1(F) = 0 .

Let F
ϕ→ G be a morphism in ME . We say that ϕ is K-null if

K0(ϕ) = K1(ϕ) = 0 .

We say that ϕ factorizes through null if there are morphisms F
ϕ ′→ H

ϕ ′′→ G in ME such

that ϕ = ϕ ′′ ◦ϕ ′ and His K-null.
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PROPOSITION 7.1.8

a) If F
ϕ−→ G

ψ−→ H are morphisms in ME then

ψ̌← ◦ ϕ̌← = (ψ̌ ◦ ϕ̌)← =

(
ˇ︷ ︸︸ ︷

ψ ◦ϕ

)
← , K1(ψ)◦K1(ϕ) = K1(ψ ◦ϕ) .

b) If ϕ = 0 then K1(ϕ) = 0.

c) (Homotopy invariance of K1) If ϕ,ψ : F −→ G are homotopic morphisms in ME

then

K1(ϕ) = K1(ψ) .

d) (Homotopy invariance of K1) If F
ϕ−→ G

ψ−→ F is a homotopy in ME then

K1(ϕ) : K1(F)−→ K1(G), K1(ψ) : K1(G)−→ K1(F)

are isomorphisms and K1(ψ) = K1(ϕ)
−1.

e) If the E-C*-algebra F is homotopic to {0} then F is K-null.

f) If a morphism in ME factorizes through null then it is K-null.

a) Since

ψ̌n ◦ ϕ̌n = (ψ̌ ◦ ϕ̌)n =

(
ˇ︷ ︸︸ ︷

ψ ◦ϕ

)
n

for every n ∈ IN we get

ψ̌← ◦ ϕ̌← = (ψ̌ ◦ ϕ̌)← =

(
ˇ︷ ︸︸ ︷

ψ ◦ϕ

)
← .

For U ∈ unF̌ , by Proposition 7.1.6 c),

K1(ψ)K1(ϕ)[U ]1 = K1(ψ)[ϕ̌←U ]1 = [ψ̌←ϕ̌←U ]1 =

= [(ψ̌ ◦ ϕ̌)←U ]1 =

 ˇ︷ ︸︸ ︷
ψ ◦ϕ

←U


1

= K1(ψ ◦ϕ)[U ]1 ,

so K1(ψ)◦K1(ϕ) = K1(ψ ◦ϕ).

b) If we put ϑ : F −→ {0}, ι : {0} −→ G then ϕ = ι ◦ϑ and by a) and Proposition
7.1.6 e), K1(ϕ) = 0.
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c) Let

φs : F −→ G, s ∈ [0,1]

be a pointwise continuous path of morphisms in ME with φ0 = ϕ and φ1 = ψ . Let n ∈
IN. Then

(φ̌s)n : F̌n −→ Ǧn, s ∈ [0,1]

is a pointwise continuous path of E-C*-homomorphisms with (φ̌0)n = ϕ̌n and (φ̌1)n = ψ̌n.
For every U ∈Un F̌n, the map

ϑ : [0,1]−→Un Ǧn , s 7−→ (φ̌s)nU

is continuous and ϑ(0) = ϕ̌nU , ϑ(1) = ψ̌nU , i.e. ϕ̌nU and ψ̌nU are homotopic in Un Ǧn.
It follows

K1(ϕ)[τ
F̌
n U ]1 = K1(ψ)[τ F̌

n U ]1 ,

which implies K1(ϕ) = K1(ψ).

d) follows from c) and Proposition 7.1.6 d).

e) By d) and Proposition 7.1.6 e), K1(F) = {0}. By the Homotopy invariance of K0

(Theorem 6.2.11 e)), F is K-null.

f) follows immediately from a), e), and Corollary 6.2.3 a).

PROPOSITION 7.1.9 If

0−→ F
ϕ−→ G

ψ−→ H −→ 0

is an exact sequence in ME then

K1(F)
K1(ϕ)−→ K1(G)

K1(ψ)−→ K1(H)

is also exact.

Let a ∈ Ker K1(ψ) and let U ∈ unǦ with a = [U ]1. By Proposition 7.1.6 c),

0 = K1(ψ)a = [ψ̌←U ]1 , ψ̌←U ∈ unE Ȟ .
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By Proposition 7.1.6 b), there is a V ∈ unE Ǧ with ψ̌←V = ψ̌←U . We put W :=UV ∗. By
Proposition 7.1.4 c), [W ]1 = a and so

ψ̌←W = (ψ̌←U)(ψ̌←V )∗ = 1E .

W has the form
W = ∑

t∈Tn

((αt ,Xt)⊗ idK)V Ǧ
t

for some n ∈ IN, where (αt ,Xt) ∈ E×G for every t ∈ Tn. We get

1E = ψ̌nW = ∑
t∈Tn

((αt ,ψXt)⊗ idK)V Ȟ
t

and so by [2] Theorem 2.1.9 a), ψXt = 0 for every t ∈ Tn. For every t ∈ Tn, let Yt ∈ F with
ϕYt = Xt and put

W ′ := ∑
t∈Tn

((αt ,Yt)⊗ idK)V F̌
t .

Since ϕ̌ : F̌ −→ Ǧ is an embedding, W ′ ∈Un F̌←n and by Proposition 7.1.6 c),

K1(ϕ)[W ′]1 = [ϕ̌nW ′]1 = [W ]1 = a .

Thus Ker K1(ψ)⊂ ImK1(ϕ).

Let now U ∈ unF̌←. By Proposition 7.1.8 a),b),

K1(ψ)K1(ϕ)[U ]1 = K1(ψ ◦ϕ)[U ]1 = K1(0)[U ]1 = 0

so ImK1(ϕ)⊂ Ker K1(ψ).

PROPOSITION 7.1.10 The following are equivalent for every full E-C*-algebra F.

a) K1(F) = {0}.

b) For every n ∈ IN and U ∈Un Fn there is an m ∈ IN, m > n, with τF
m,nU ∼h 1E in

Un Fm.

a⇒ b Since

(1E ,U) ∈Un En×Un Fn =Un (En×Fn) =Un (E×F)n ,
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it follows from Proposition 4.1.2 d), (1E ,U − 1E) ∈ Un F̌n. By a), there is an m ∈ IN,
m > n, with

U0 := (1E ,τ
F
m,nU−1E) = τ

F̌
m,n(1E ,U−1E) ∈UnEm F̌m .

Thus there is a continuous map

[0,1]−→Un F̌m, s 7−→Us

with U1 ∈Un Em (⊂Un F̌m). We put

U ′s :=Us(σ
F
mUs)

∗ (∈Un F̌m)

for every s ∈ [0,1]. Then the map

[0,1]−→Un F̌m, s 7−→U ′s

is continuous and U ′0 =U0, U ′1 = 1E . Let

ϕ : F̌ −→ E×F , (α,x) 7−→ (α,x+α)

be the E-C*-isomorphism of Proposition 4.1.2 d). Then

U ′′ : [0,1]−→Un En×Un Fn , s 7−→ ϕmU ′s

is continuous and

U ′′0 = ϕmU ′0 = (1E ,τ
F
m,nU) , U ′′1 = ϕmU ′1 = (1E ,1E) .

Thus τF
m,nU ∼h 1E in Un Fm.

b ⇒ a Let a ∈ K1(F). There are n ∈ IN and U ∈ Un F̌n with a = [U ]1. Since
U(σF

n U)∗ ∼1 U , we may assume U =U(σF
n U)∗, i.e. σF

n U = 1E . Thus there is a unique
X ∈ Fn with ιF

n X =U−1E . Then

U ′ := X +1E ∈Un Fn .

By b), there is an m ∈ IN, m > n, with τF
m,nU ′ ∼h 1E . By Proposition 4.1.2 d),

U = (1E ,X) = (1E ,U ′−1E) , τ
F̌
m,nU = (1E ,τ

F
m,nU ′−1E)∼h (1E ,0) ,

i.e. a = [U ]1 = 0.
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COROLLARY 7.1.11 If F is a finite-dimensional full E-C*-algebra then K1(F) = {0}.

For every n∈ IN, Fn is finite-dimensional and so there is a finite family (ki)i∈I in IN such
that Fn ≈ ∏

i∈I
ICki,ki . Thus every U ∈Un Fn is homotopic to 1E in Un Fn. By Proposition

7.1.10 b⇒ a, K1(F) = {0}.

COROLLARY 7.1.12 If the spectrum of E is totally disconnected (this happens e.g. if

E is a W*-algebra ([1] Corollary 4.4.1.10)) then Un En =Un0 En for every n ∈ IN and so

K1(E) = {0}.

Let Ω be the spectrum of E and let U ∈Un En. U has the form

U = ∑
t∈Tn

(Ut ⊗ idK)Vt ,

with Ut ∈ E for every t ∈ Tn. We put

U(ω) := ∑
t∈Tn

(Ut(ω)⊗ idK)Vt

for every ω ∈ Ω and denote by σ(U(ω)) its spectrum, which is finite. Let ω0 ∈ Ω and
let θ0 ∈ [0,2π[ such that eiθ0 6∈ σ(U(ω0)). By [1] Corollary 2.2.5.2, there is o clopen
neighborhood Ω0 of ω0 such that eiθ0 does not belong to the spectrum of U(ω) for all
ω ∈Ω0. Assume for a moment Ω0 = Ω and put for every s ∈ [0,1],

hs : IT\{α} −→ IT , eiϑ 7−→ eiϑs, Ws := hs(U) ,

where ϑ ∈]ϑ0−2π,ϑ0[. Then

[0,1]−→Un En, s 7−→Ws

is a continuous path in Un En ([1] Corollaries 4.1.2.13 and 4.1.3.5) with W1 = U and
W0 = 1E . Thus U ∈Un0 En.

Since Ω is the union of a finite family of pairwise disjoint clopen sets of the above form
Ω0, U ∈Un0 En.

By Proposition 7.1.10 b⇒ a, K1(E) = {0}.
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7.2 The Index Map

Throughout this section

0−→ F
ϕ−→ G

ψ−→ H −→ 0

denotes an exact sequence in ME and n ∈ IN.

PROPOSITION 7.2.1 Let U ∈Un Ȟn−1.

a) There are V ∈Un Ǧn and P ∈ Pr F̌n such that

ψ̌nV = AnU +BnU∗, ϕ̌nP =VAnV ∗ .

b) If W ∈Un Ǧn and Q ∈ Pr F̌n such that

ψ̌nW = AnU +BnU∗, ϕ̌nQ =WAnW ∗

then σF
n Q = An and P∼0 Q.

c) Let U0 ∈Un Ȟn−1, V0 ∈Un Ǧn, and P0 ∈ Pr F̌n with

U0 ∼1 U, ψ̌nV0 = AnU0 +BnU∗0 , ϕ̌nP0 =V0AnV ∗0 .

Then P0 ∼0 P.

d) If U ∈UnEn−1 Ȟn−1 then P∼0 An.

a) By Proposition 6.2.5 d), AnU +BnU∗ ∈Un0 Ȟn so by [4] Lemma 2.1.7 (i) (and [2]
Theorem 2.1.9 a)), there is a V ∈Un0 Ǧn with ψ̌nV = AnU +BnU∗. We have

ψ̌n(VAnV ∗) = (AnU +BnU∗)An(AnU∗+BnU) = An ,

σ
H
n ψ̌n(VAnV ∗) = σ

H
n An = An = ψ̌n(VAnV ∗) ,

so by Proposition 6.2.8 b2⇒ b1, there is a P ∈ Pr F̌n with ϕ̌nP =VAnV ∗.

b) Since πF = πH ◦ ψ̌ ◦ ϕ̌ , we have

π
F
n Q = π

H
n ψ̌nϕ̌nQ = π

H
n ψ̌n(WAnW ∗) =
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= π
H
n ((AnU +BnU∗)An(AnU∗+BnU)) = π

H
n An = An ,

σF
n Q = An. Since

ψ̌n(WV ∗) = (AnU +BnU∗)(AnU∗+BnU) = An +Bn = 1E = σ
H
n ψ̌n(WV ∗) ,

by Proposition 6.2.8 b2⇒ b1, there is a Z ∈Un F̌n with ϕ̌nZ =WV ∗. Then

ϕ̌n(ZPZ∗) = (WV ∗)(VAnV ∗)(VW ∗) =WAnW ∗ = ϕ̌nQ ,

ZPZ∗ = Q, P∼0 Q .

c) By Proposition 7.1.4 c), U∗U0,UU∗0 ∈ UnEn−1 Ȟn−1 so by [4] Lemma 2.1.7 (iii),
there are X ,Y ∈Un Ǧn−1 such that

ψ̌n−1X =U∗U0, ψ̌n−1Y =UU∗0 .

We put
Z :=V (AnX +BnY ) .

By Proposition 6.2.5 c), Z ∈Un Ǧn. We have

ψ̌nZ = (AnU +BnU∗)(AnU∗U0 +BnUU∗0 ) = AnU0 +BnU∗0 ,

ψ̌n(ZAnZ∗) = (AnU0 +BnU∗0 )An(AnU∗0 +BnU0) = An = σ
H
n ψ̌n(ZAnZ∗) .

By Proposition 6.2.8 b2⇒ b1, there is a Q ∈ Pr F̌n with ϕ̌nQ = ZAnZ∗. By b), Q ∼0 P0.
From

ϕ̌nQ = ZAnZ∗ =V (AnX +BnY )An(AnX∗+BnY ∗)V ∗ =VAnV ∗ = ϕ̌nP

it follows P0 ∼0 Q = P (by [2] Theorem 2.1.9 a)).

d) By c), we may take U = 1E . Further we may take W = 1E and Q = An in b), so
P∼ An.

PROPOSITION 7.2.2 For every i ∈ {1,2} let Ui ∈Un Ȟn−1, Vi ∈Un Ǧn, and Pi ∈ Pr F̌n

such that

ψ̌nVi = AnUi +BnU∗i , ϕ̌nPi =ViAnV ∗i .

Put

X := An+1An +C∗n+1Cn +Cn+1C∗n +Bn+1Bn, U := AnU1 +BnU2 ,

V := X(An+1V1 +Bn+1V2)X , P := X(An+1P1 +Bn+1P2)X ,
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a) X ∈Un0 En+1, U ∈Un Ȟn, V ∈Un Ǧn+1, P ∈ Pr F̌n+1.

b) ψ̌n+1V = An+1U +Bn+1U∗, ϕ̌n+1P =VAn+1V ∗.

a) We have
X2 = An+1An +An+1Bn +Bn+1An +Bn+1Bn = 1E .

Since X is selfadjoint it follows X ∈Un0 En+1 ([4] Lemma 2.1.3 (ii)) and so P ∈ Pr F̌n+1.
By Proposition 6.2.5 c), U ∈Un Ȟn and V ∈Un Ǧn+1.

b) We have

XAn+1X = (An+1An +Cn+1C∗n)X = An+1An +Bn+1An = An ,

XBn+1X = (C∗n+1Cn +Bn+1Bn)X = An+1Bn +Bn+1Bn = Bn ,

XAnX = An+1, XBnX = Bn+1 ,

XAn+1AnX = An+1An, XAn+1BnX = Bn+1An ,

XBn+1AnX = An+1Bn, XBn+1BnX = Bn+1Bn ,

ψ̌n+1V = X(An+1(AnU1 +BnU∗1 )+Bn+1(AnU2 +BnU∗2 ))X =

= An+1AnU1 +Bn+1AnU∗1 +An+1BnU2 +Bn+1BnU∗2 = An+1U +Bn+1U∗ ,

VAn+1V ∗ = X(An+1V1 +Bn+1V2)XAn+1X((An+1V ∗1 +Bn+1V ∗2 )X =

= X(An+1V1 +Bn+1V2)An(An+1V ∗1 +Bn+1V ∗2 )X =

= X(An+1V1AnAn+1V ∗1 +Bn+1V2AnBn+1V ∗2 )X =

= X(An+1V1AnV ∗1 +Bn+1V2AnV ∗2 )X =

= X(An+1ϕ̌nP1 +Bn+1ϕ̌nP2)X =

= ϕ̌n+1(X(An+1P1 +Bn+1P2)X) = ϕ̌n+1P .

COROLLARY 7.2.3 There is a unique group homomorphism, called the index map,

δ1 : K1(H)−→ K0(F)

such that

δ1[U ]1 = [P]0− [σF
→P]0

for every U ∈ unȞ, where P satisfies the conditions of Proposition 7.2.1 a).
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By Proposition 7.2.1 a),b), the map

νn : Un Ȟn−1 −→ K0(F) , U 7−→ [P]0− [σF
n P]0

is well-defined for every n ∈ IN, where P is associated to U as in Proposition 7.2.1 a).
By Proposition 7.2.1 c), νnU = νnU0 for all U,U0 ∈Un Ȟn−1 with U ∼1 U0. With the
notation of Proposition 7.2.2,

νn+1(AnU1 +BnU2) = νn+1U = [P]0− [σF
n+1P]0 =

= [An+1P1 +Bn+1P2]0− [σF
n+1(An+1P1 +Bn+1P2)]0 =

= [P1]0 +[P2]0− [σF
n P1]0− [σF

n P2]0 = νnU1 +νnU2 .

Thus by Proposition 7.2.1 d) (and Proposition 7.2.2), for U ∈Un Ȟn−1,

νn+1(τ̄
Ȟ
n U) = νn+1(AnU +Bn) = νnU +νn1E = νnU .

Hence the map
ν : unȞ −→ K0(F) , U 7−→ νnU

is well-defined, where U ∈Un Ȟn−1 for some n ∈ IN. By Proposition 7.2.1 d), again, ν

induces a map δ1 : K1(H)−→ K0(F), which is additive by the above considerations. The
uniqueness follows from the fact that the map [·]1 : unȞ −→ K1(H) is surjective.

PROPOSITION 7.2.4 Let

0−→ F ′
ϕ ′−→ G′

ψ ′−→ H ′ −→ 0

be an exact sequence in ME and δ ′1 its associated index map. If the diagram in ME

0 −−−−→ F
ϕ−−−−→ G

ψ−−−−→ H −−−−→ 0

γ

y α

y yβ

0 −−−−→ F ′ −−−−→
ϕ ′

G′ −−−−→
ψ ′

H ′ −−−−→ 0

is commutative then the diagram

K1(H)
δ1−−−−→ K0(F)

K1(β )

y yK0(γ)

K1(H ′) −−−−→
δ ′1

K0(F ′)

is also commutative.
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Let U ∈Un Ȟn−1, V ∈Un Ǧn, and P ∈ Pr F̌n with

ψ̌nV = AnU +BnU∗, ϕ̌nP =VAnV ∗ .

Put
V ′ := α̌nV ∈Un Ǧ′n, P′ := γ̌nP ∈ Pr F̌ ′n .

Then
ψ̌ ′nV ′ = ψ̌ ′nα̌nV = β̌nψ̌nV = Anβ̌n−1U +Bnβ̌n−1U∗ ,

ϕ̌ ′nP′ = ϕ̌ ′nγ̌nP = α̌nϕ̌nP = α̌n(VAnV ∗) =V ′AnV ′∗ .

By Corollary 7.2.3 for δ ′1, Proposition 7.1.6 c), and Proposition 6.2.2 c),

δ
′
1K1(β )[U ]1 = δ

′
1[β̌n−1U ]1 = [P′]0− [σF ′

n P′]0 = [γ̌nP]0− [σF ′
n γ̌nP]0 =

= [γ̌nP]0− [γ̌nσ
F
n P]0 = K0(γ)([P]0− [σF

n P]0) = K0(γ)δ1[U ]1 .

PROPOSITION 7.2.5

a) δ1 ◦K1(ψ) = 0.

b) K0(ϕ)◦δ1 = 0.

a) Let U ∈Un Ǧn−1 and put

V := τ̄
Ǧ
n U = AnU +Bn ∈Un Ǧn .

Then
ψ̌nV = An(ψ̌n−1U)+Bn ,

(ψ̌nV )An(ψ̌nV )∗ = (An(ψ̌n−1U)+Bn)An(An(ψ̌n−1U)∗+Bn) = An ,

so (by Proposition 7.1.6 c))

δ1K1(ψ)[U ]1 = δ1[ψ̌n−1U ]1 = [An]0− [σF
n An]0 = 0 .

b) Let U ∈Un Ȟn−1, V ∈Un Ǧn, and P ∈ Pr F̌n with

ψ̌nV = AnU +BnU∗, ϕ̌nP =VAnV ∗ .
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By Proposition 6.2.2 c) (since ϕ̌ ◦σF = σG ◦ ϕ̌),

K0(ϕ)δ1[U ]1 = K0(ϕ)([P]0− [σF
n P]0) =

= [ϕ̌nP]0− [ϕ̌nσ
F
n P]0 = [ϕ̌nP]0− [σG

n ϕ̌nP]0 =

= [VAnV ∗]0− [(σG
n V )An(σ

G
n V )∗]0 = [An]0− [An]0 = 0 .

PROPOSITION 7.2.6 Let U ∈Un Ȟn−1. There are V ∈ Ǧn and P,Q ∈ Pr F̌n such that

V ∗V ∈ Pr Ǧn, ψ̌nV = AnU ,

ϕ̌nP = 1E −V ∗V, ϕ̌nQ = 1E −VV ∗, δ1[U ]1 = [P]0− [Q]0 .

By Proposition 6.2.5 d), AnU +BnU∗ ∈Un0 Ȟn. Since ψ̌n is surjective, by [4] Lemma
2.1.7 (i), there is a V0 ∈Un Ǧn with ψ̌nV0 = AnU +BnU∗. Put V :=V0An ∈ Ǧn. Then

V ∗V = AnV ∗0 V0An = An ∈ Pr Ǧn

and
ψ̌nV = (ψ̌nV0)An = (AnU +BnU∗)An = AnU .

We have
ψ̌n(1E −V ∗V ) = 1E −An = Bn = ψ̌n(1E −VV ∗) .

By Proposition 6.2.8 b2⇒ b1, there are P,Q ∈ Pr F̌n with

ϕ̌nP = 1E −V ∗V, ϕ̌nQ = 1E −VV ∗ .

Put
W := An+1V +Cn+1(1E −V ∗V )+C∗n+1(1E −VV ∗)+Bn+1V ∗ ∈ Ǧn+1 ,

Z := An +(Cn+1 +C∗n+1)Bn ∈ En+1 .

Since VV ∗V =V , V ∗VV ∗ =V ∗, and

W ∗ = An+1V ∗+C∗n+1(1E −V ∗V )+Cn+1(1E −VV ∗)+Bn+1V ,

we get

WW ∗ = An+1VV ∗+Bn+1(1E −V ∗V )+An+1(1E −VV ∗)+Bn+1V ∗V =
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= An+1 +Bn+1 = 1E ,

W ∗W = An+1V ∗V +An+1(1E −V ∗V )+Bn+1(1E −VV ∗)+Bn+1VV ∗ =

= An+1 +Bn+1 = 1E .

By Proposition 6.2.5 a),

Z2 = An +Bn = 1E

so W ∈Un Ǧn+1, Z ∈Un En+1, and ZW ∈Un Ǧn+1. By the above and Proposition 6.2.5
a),

ψ̌n+1W = An+1AnU +(Cn+1 +C∗n+1)Bn +Bn+1AnU∗ ,

ψ̌n+1(ZW ) = Zψ̌n+1W =

= (An +(Cn+1 +C∗n+1)Bn)(An+1AnU +(Cn+1 +C∗n+1)Bn +Bn+1AnU∗) =

= An+1AnU +Bn+1AnU∗+Bn = An+1AnU +Bn+1AnU∗+(An+1 +Bn+1)Bn =

= An+1(AnU +Bn)+Bn+1(AnU∗+Bn) .

We put

R := An+1(1E −Q)+Bn+1P ∈ Pr F̌n+1 .

Using again VV ∗V =V and V ∗VV ∗ =V ∗,

ϕ̌n+1R = An+1VV ∗+Bn+1(1E −V ∗V ) ,

WAn+1 = An+1V +Cn+1(1E −V ∗V ) ,

WAn+1W ∗ = An+1VV ∗+Bn+1(1E −V ∗V ) = ϕ̌n+1R ,

ZWAn+1W ∗Z = Z(ϕ̌n+1R)Z = ϕ̌n+1(ZRZ) .

Since ZRZ ∼0 R and U ∼1 AnU +Bn, by the definition of δ1,

δ1[U ]1 = δ1[AnU +Bn]1 = [R]0− [σF
n+1R]0 .

Since πH ◦ ψ̌ ◦ ϕ̌ = πF , by the above,

π
F
n P = π

H
n ψ̌nϕ̌nP = π

H
n ψ̌n(1E −V ∗V ) = π

H
n Bn = Bn = π

F
n Q .

Thus by Proposition 6.1.3 (and Proposition 7.2.1 b)),

σ
F
n+1R = An+1(1E −Bn)+Bn+1Bn ∼0 An+1Bn +An+1An =
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= An+1 = ρ̄
F̌
n+11E ∼0 1E

and we get
[R]0 = [1E −Q]0 +[P]0 = [1E ]0 +[P]0− [Q]0 ,

δ1[U ]1 = [1E ]0 +[P]0− [Q]0− [1E ]0 = [P]0− [Q]0 .

PROPOSITION 7.2.7 Ker δ1 ⊂ Im K1(ψ).

Let a ∈ Ker δ1 and let U ∈ Un Ȟn−1 with a = [U ]1. By Proposition 7.2.6, there are
V ∈ Ǧn and P,Q ∈ Pr F̌n such that V ∗V ∈ Pr Ǧn, ψ̌nV = AnU ,

ϕ̌nP = 1E −V ∗V, ϕ̌nQ = 1E −VV ∗, δ1[U ]1 = [P]0− [Q]0 .

Then [P]0 = [Q]0. By Corollary 6.1.6 a⇒c, there is an m ∈ IN, m > n+1, and an X ∈ F̌m

such that

X∗X =

(
m

∏
i=n+1

Ai

)
P+

(
1E −

m

∏
i=n+1

Ai

)
,

XX∗ =

(
m

∏
i=n+1

Ai

)
Q+

(
1E −

m

∏
i=n+1

Ai

)
.

Put W := ϕ̌mX . Then

W ∗W = ϕ̌m(X∗X) =

(
m

∏
i=n+1

Ai

)
(1E −V ∗V )+

(
1E −

m

∏
i=n+1

Ai

)
=

= 1E −

(
m

∏
i=n+1

Ai

)
V ∗V ,

WW ∗ = 1E −

(
m

∏
i=n+1

Ai

)
VV ∗ ,

(
m

∏
i=n+1

Ai

)
VV ∗WW ∗ =

(
m

∏
i=n+1

Ai

)
V ∗VW ∗W = 0 ,

(
m

∏
i=n+1

Ai

)
V ∗W =

(
m

∏
i=n+1

Ai

)
VW ∗ = 0 ,

((
m

∏
i=n+1

Ai

)
V +W

)∗(( m

∏
i=n+1

Ai

)
V +W

)
=
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=

(
m

∏
i=n+1

Ai

)
V ∗V +W ∗W = 1E ,

((
m

∏
i=n+1

Ai

)
V +W

)((
m

∏
i=n+1

Ai

)
V +W

)∗
=

=

(
m

∏
i=n+1

Ai

)
VV ∗+WW ∗ = 1E ,

(
m

∏
i=n+1

Ai

)
V +W ∈Un Ǧm .

From

ψ̌m(W ∗W ) = 1E −

(
m

∏
i=n+1

Ai

)
ψ̌m(V ∗V ) =

= 1E −

(
m

∏
i=n+1

Ai

)
An = ψ̌m(WW ∗) ,

since ψ̌mW = ψ̌mϕ̌mX ∈ Em, it follows

ψ̌mW +

(
m

∏
i=n

Ai

)
∈Un Em .

By the above, (
m

∏
i=n

Ai

)
Uψ̌mW ∗ =

(
m

∏
i=n+1

Ai

)
(ψ̌mV )(ψ̌mW ∗) =

= ψ̌m

((
m

∏
i=n+1

Ai

)
VW ∗

)
= 0 ,

(ψ̌mW )∗(ψ̌mW )

(
m

∏
i=n

Ai

)
= 0 , (ψ̌mW )

(
m

∏
i=n

Ai

)
= 0 ,

ψ̌m

((
m

∏
i=n+1

Ai

)
V +W

)
=

(
m

∏
i=n

Ai

)
U + ψ̌mW ∼1

∼1

((
m

∏
i=n

Ai

)
U + ψ̌mW

)((
m

∏
i=n

Ai

)
+ ψ̌mW ∗

)
=

=

((
m

∏
i=n

Ai

)
U +

(
1E −

m

∏
i=n

Ai

))
.
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By Proposition 7.1.3 and Proposition 7.1.6 c),

a = [U ]1 =

[(
m

∏
i=n

Ai

)
U +

(
1E −

m

∏
i=n

Ai

)]
1

=

=

[
ψ̌m

((
m

∏
i=n+1

Ai

)
V +W

)]
1

=

= K1(ψ)

[(
m

∏
i=n+1

Ai

)
V +W

]
1

∈ Im K1(ψ) .

PROPOSITION 7.2.8 Ker K0(ϕ)⊂ Im δ1.

Let a ∈ Ker K0(ϕ). By Proposition 6.2.4, there is a P ∈ Pr F̌→ with

a = [P]0− [σF
→P]0 .

By Proposition 6.2.2 c),

0 = K0(ϕ)a = [ϕ̌→P]0− [ϕ̌→σ
F
→P]0 .

Let n ∈ IN such that P ∈ Pr F̌→n. Then [ϕ̌→nP]0 = [ϕ̌→nσF
→nP]0. By Corollary 6.1.6

a⇒c, there is an m ∈ IN, m > n+1, such that

ϕ̌→nP+(Bm)→ ∼0 ϕ̌→nσ
F
→nP+(Bm)→ .

Put

Q := P+(Bm)→ ∈ Pr F̌→m .

Then

a = [Q]0− [σF
→Q]0, ϕ̌→mQ∼0 ϕ̌→mσ

F
→mQ = σ

F
→mQ .

By Proposition 6.2.6, there are k ∈ IN, k ≥ m+2, and W ∈Un Ǧ→k with

W (ϕ̌→mQ)W ∗ = σ
F
→mQ .

It follows

(σF
→mQ)W =W (ϕ̌→mQ)W ∗W =W (ϕ̌→mQ) ,

(ψ̌→kW )(σF
→kQ) = (ψ̌→kW )(ψ̌→kϕ̌→kQ) = ψ̌→k(W ϕ̌→kQ) =
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= ψ̌→k((σ
F
→kQ)W ) = (σF

→kQ)(ψ̌→kW ) .

Put

U := (ψ̌→kW )(1E −σ
F
→kQ)+σ

F
→kQ ∈ Ȟ→k .

Then

UU∗ =U∗U = 1E , U ∈Un Ȟ→k .

Put

V1 := (Ak+1)→(1E −σ
F
→kQ)W +(Bk+1)→σ

F
→kQ ∈ Ǧk+1 .

Then

V ∗1 = (Ak+1)→W ∗(1E −σ
F
→kQ)+(Bk+1)→σ

F
→kQ ,

V1V ∗1 = (Ak+1)→(1E −σ
F
→kQ)+(Bk+1)→σ

F
→kQ ∈ Pr Ek+1 ,

V ∗1 V1 = (Ak+1)→W ∗(1E −σ
F
→kQ)W +(Bk+1)→σ

F
→kQ =

= (Ak+1)→(1E −W ∗(σF
→kQ)W )+(Bk+1)→σ

F
→kQ .

Put

Z := (1E −σ
F
→kQ)+((Ck+1)→+(C∗k+1)→)σ

F
→kQ ∈ Ek+1 .

By Proposition 6.2.5 a),

Z2 = (1E −σ
F
→kQ)+σ

F
→kQ = 1E , Z ∈Un Ek+1 ,

ZV1 = (Ak+1)→(1E −σ
F
→kQ)W +(C∗k+1)→σ

F
→kQ ,

V := ZV1Z = (Ak+1)→(1E −σ
F
→kQ)W (1E −σ

F
→kQ)+

+(C∗k+1)→(1E −σ
F
→kQ)Wσ

F
→kQ+(Ak+1)→σ

F
→kQ ∈ Ǧ→k+1 ,

ψ̌→V = (Ak+1)→(1E −σ
F
→kQ)ψ̌→kW +(Ak+1)→σ

F
→kQ = (Ak+1)→U ,

VV ∗ = ZV1V ∗1 Z ∈ Pr Ek+1, V ∗V = ZV ∗1 V1Z ,

1E −VV ∗ = Z(1E −V1V ∗1 )Z =

= Z((Ak+1)→σ
F
→kQ+(Bk+1)→(1E −σ

F
→kQ))Z ,

1E −V ∗V = Z(1E −V ∗1 V1)Z =

= Z((Ak+1)→W ∗(σF
→kQ)W +(Bk+1)→(1E −σ

F
→kQ))Z =

= Z((Ak+1)→ϕ̌→kQ+(Bk+1)→(1E −σ
F
→kQ))Z ,
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ϕ̌→,k+1(Z((Ak+1)→Q+(Bk+1)→(1E −σ
F
→kQ))Z) =

= Z((Ak+1)→ϕ̌kQ+(Bk+1)→(1E −σ
F
→kQ))Z = 1E −V ∗V ,

ϕ̌→,k+1(Z((Ak+1)→σ
F
→kQ+(Bk+1)→(1E −σ

F
→kQ))Z)) = 1E −VV ∗ .

By Proposition 7.2.6,

δ1[U ]1 = [Z((Ak+1)→Q+(Bk+1)→(1E −σ
F
→kQ))Z]0−

−[Z((Ak+1)→σ
F
→kQ+(Bk+1)→(1E −σ

F
→k)Q)Z]0 = [Q]0− [σF

→Q]0 = a .

Thus a ∈ Im δ1.

THEOREM 7.2.9 The sequence

K1(F)
K1(ϕ)−→ K1(G)

K1(ψ)−→ K1(H)
δ1−→ K0(F)

K0(ϕ)−→ K0(G)
K0(ψ)−→ K0(H)

is exact.

The exactness was proved: for K1(G) in Proposition 7.1.9, for K1(H) in Proposition
7.2.7 and Proposition 7.2.5 a), for K0(F) in Proposition 7.2.8 and Proposition 7.2.5 b),
and for K0(G) in Proposition 6.2.8 c).

7.3 K1(F)≈ K0(SF)

DEFINITION 7.3.1 Let F be an E-C*-algebra . We denote by CF the E-C*-algebra of

continuous maps x : [0,1] −→ F with x(0) = 0 and by SF its E-C*-subalgebra

{ x ∈CF | x(1) = 0} (Definition 2.1.1 or [2] Corollary 1.2.5 a),d)). Moreover we denote

by θF : K1(F)−→ K0(SF) the index map associated to the exact sequence

0−→ SF
iF−→CF

jF−→ F −→ 0 ,

in ME , where iF is the inclusion map and

jF : CF −→ F , x 7−→ x(1) .

If F
ϕ−→ G is a morphism in ME then we put

Sϕ : SF −→ SG , x 7−→ ϕ ◦ x ,

Cϕ : CF −→CG , x 7−→ ϕ ◦ x .
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If F
ϕ−→ G

ψ−→ H are morphisms in ME then S(ψ)◦S(ϕ) = S(ψ ◦ϕ).

THEOREM 7.3.2 θF is a group isomorphism for every E-C*-algebra F.

CF is null-homotopic ([4] Example 4.1.5 or Proposition 2.4.1), so by the Homotopy
invariance (Theorem 6.2.11 e), Proposition 7.1.8 e)), it is K-null. By Theorem 7.2.9, the
sequence

K1(CF)
K1( jF )−→ K1(F)

θF−→ K0(SF)
K0(iF )−→ K0(CF)

is exact, so θF is a group isomorphism.

PROPOSITION 7.3.3 Let F and G be E-C*-algebras.

a) For all (x,y) ∈ (SF)× (SG) put

︷︸︸︷
(x,y) : [0,1]−→ F×G , s 7−→ (x(s),y(s)) .

Then the map

(SF)× (SG)−→ S(F×G), (x,y) 7−→
︷︸︸︷
(x,y)

is an isomorphism in ME (Definition 1.1.2).

b) K1(F)×K1(G)≈ K1(F×G) (Product Theorem).

a) is easy to see.

b) By Theorem 7.3.2, the maps

K1(F)×K1(G)
θF×θG−→ K0(SF)×K0(SG), K1(F×G)

θF×G−→ K0(S(F×G))

are group isomorphisms. By a), K0((SF)× (SG)) ≈ K0(S(F ×G)) and by Corollary
6.2.10 b), K0((SF)× (SG))≈ K0(SF)×K0(SG). Thus

K1(F)×K1(G)≈ K1(F×G) .
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COROLLARY 7.3.4 Let F
ϕ→ F ′, G

ψ→ G′ be morphisms in ME and

ϕ×ψ : F×G−→ F ′×G′ , (x,y) 7−→ (ϕx,ψy) .

Then ϕ×ψ is a morphism in ME and

Ki(ϕ×ψ) = Ki(ϕ)×Ki(ψ)

for all i ∈ {0,1}.

The assertion follows easily from Corollary 6.2.10 b) and Proposition 7.3.3 b).

PROPOSITION 7.3.5 (Product Theorem) Let (Fj) j∈J be a finite family of

E-C*-algebras, F := ∏
j∈J

Fj (Definition 1.1.2), and for every j ∈ J let ϕ j : Fj −→ F be the

canonical inclusion and ψ j : F −→ Fj the projection. Then for every i ∈ {0,1},

Φ : ∏
j∈J

Ki(Fj)−→ Ki(F) , (a j) j∈J 7−→∑
j∈J

Ki(ϕ j)a j

is a group isomorphism and

Ψ : Ki(F)−→∏
j∈J

Ki(Fj) , a 7−→ (Ki(ψ j)a) j∈J

is its inverse.

Φ and Ψ are obviously group homomorphisms. For j,k ∈ J, ψ j ◦ϕk = 0 if j 6= k and
ψ j ◦ϕ j = idFj . Thus for (a j) j∈J ∈ ∏

j∈J
Ki(Fj) and k ∈ J,

(ΨΦ(a j) j∈J)k = Ki(ψk)∑
j∈J

Ki(ϕ j)a j = ak

i.e. Ψ◦Φ is the identity map of ∏
j∈J

Ki(Fj). Since ∑
j∈J

ϕ j ◦ψ j = idF , for a ∈ Ki(F),

ΦΨa = Φ(Ki(ψ j)a) j∈J = ∑
j∈J

Ki(ϕ j)Ki(ψ j)a = Ki

(
∑
j∈J

ϕ j ◦ψ j

)
a = a

i.e. Φ◦Ψ = idKi(F).
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THEOREM 7.3.6 (Continuity of K1) Let {(Fi)i∈I , (ϕi j)i, j∈I} be an inductive system in

ME and let {F, (ϕi)i∈I} be its limit in ME . By Proposition 7.1.8 a),

{(K1(Fi))i∈I , (K1(ϕi j))i, j∈I}

is an inductive system in the category of additive groups. Let {G , (ψi)i∈I} be its limit in

this category and let ψ : G −→ K1(F) be the group homomorphism such that ψ ◦ψi =

K1(ϕi) for every i ∈ I. Then ψ is a group isomorphism.

By [4] Exercise 10.2, {SF,(Sϕi)i∈I} is the limit in ME of the inductive system
{(SFi)i∈I ,(Sϕi j)i, j∈I}. By Theorem 6.2.12, {K0(SF),(K0(Sϕi))i∈I} may be identified
with the inductive limit in the category of additive groups of the inductive system
{K0(SFi)i∈I ,(K0(Sϕi j))i, j∈I} and the assertion follows from Theorem 7.3.2.

PROPOSITION 7.3.7 Let F be an E-C*-algebra , n∈ IN, U ∈Un F̌n−1, V ∈Un (
ˇ︷︸︸︷

CF )n,

and P ∈ Pr (
ˇ︷︸︸︷

SF )n such that

ǰFV = AnU +BnU∗, ǐF P =VAnV ∗ .

Then

θF [U ]1 = [P]0− [σSF
n P]0.

The assertion follows from Corollary 7.2.3 and Definition 7.3.1.

PROPOSITION 7.3.8 If F
ϕ−→ G is a morphism in ME then the diagram

K1(F)
K1(ϕ)−−−−→ K1(G)

θF

y yθG

K0(SF) −−−−→
K0(Sϕ)

K0(SG)

is commutative.

The diagram

0 −−−−→ SF
iF−−−−→ CF

jF−−−−→ F −−−−→ 0

Sϕ

y Cϕ

y yϕ

0 −−−−→ SG −−−−→
iG

CG −−−−→
jG

G −−−−→ 0
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is commutative and the assertion follows from Proposition 7.2.4.

Remark. By Theorem 7.3.2 and Proposition 7.3.8, the functor K1 is determined by the
functor K0.

COROLLARY 7.3.9 (Split Exact Theorem) If

0−→ F
ϕ−→ G

ψ
−→

γ
←−H −→ 0

is a split exact sequence in ME then

0−→ K1(F)
K1(ϕ)−→ K1(G)

K1(ψ)
−→

K1(γ)←−
K1(H)−→ 0

is also split exact. In particular the map

K1(F)×K1(H)−→ K1(G), (a,b) 7−→ K1(ϕ)a+K1(λ )b

is a group isomorphism and K1
(
F̌
)
≈ K1 (E)×K1 (F).

By Theorem 7.2.9, the sequence

K1(F)
K1(ϕ)−→ K1(G)

K1(ψ)−→ K1(H)
δ1−→ K0(F)

K0(ϕ)−→ K0(G)
K0(ψ)−→ K0(H)

is exact and by Proposition 7.1.8 a) and Proposition 7.1.6 d),

K1(ψ)◦K1(γ) = K1(ψ ◦ γ) = K1(idH) = idK1(H) .

It remains only to prove that K1(ϕ) is injective.

It is easy to see that

0−→ SF
Sϕ−→ SG

Sψ
−→
Sγ
←−

SH −→ 0

is split exact. By Proposition 6.2.9, K0(Sϕ) is injective and by Proposition 7.3.8, the
diagram

K1(F)
K1(ϕ)−−−−→ K1(G)

θF

y yθG

K0(SF) −−−−→
K0(Sϕ)

K0(SG)

is commutative. Since θF is injective (Theorem 7.3.2), K1(ϕ) is also injective.
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The last assertion follows from the fact that

0−→ F ιF
−→ F̌

πF
−→
λF
←−

E −→ 0

is split exact.

COROLLARY 7.3.10 Let

0−→ F
ϕ−→ G

ψ
−→

γ
←−H −→ 0 , 0−→ F ′

ϕ ′−→ G′
ψ ′
−→
γ ′
←−

H ′ −→ 0

be split exact sequences in ME and

F λ−→ F ′, G
µ−→ G′, H ν−→ H ′

morphisms in ME such that the corresponding diagram is commutative and let i∈ {0,1}.

a) If we denote by

φ : Ki(F)×Ki(H)−→ Ki(G) , (a,b) 7−→ Ki(ϕ)a+Ki(γ)b ,

φ
′ : Ki(F ′)×Ki(H ′)−→ Ki(G′) , (a′,b′) 7−→ Ki(ϕ

′)a′+Ki(γ
′)b′

the group isomorphisms (Proposition 6.2.9, Corollary 7.3.9) then

Ki(µ)◦Ki(φ) = Ki(φ
′)◦ (Ki(λ )×Ki(ν)) .

b) If we identify Ki(G) with Ki(F)×Ki(H) using φ and Ki(G′) with Ki(F ′)×Ki(H ′)

using φ ′ then

Ki(µ) : Ki(G)−→ Ki(G′) , (a,b) 7−→ (Ki(λ )a,Ki(ν)b) .

a) For (a,b) ∈ Ki(F)×Ki(H),

Ki(µ)Ki(φ)(a,b) = Ki(µ)(Ki(ϕ)a+Ki(γ)b) =

= Ki(ϕ
′)Ki(λ )a+Ki(γ

′)Ki(ν)b = Ki(φ
′)(Ki(λ )×Ki(ν))(a,b) .

b) follows from a).
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8.1 The Bott Map

LEMMA 8.1.1 Let F be a full E-C*-algebra and n ∈ IN. We identify SF with

C0 ( IT\{1},F) in an obvious way.

a) FIT := { X ∈ C ( IT,F) | X(1) ∈ E } is a full E-C*-subalgebra of C ( IT,F).

b) If we put for every (α,x) ∈
ˇ︷︸︸︷

SF︷ ︸︸ ︷
(α,x) : IT−→ F , z 7−→ α + x(z)

then the map

ψ :
ˇ︷︸︸︷

SF −→ FIT , (α,x) 7−→
︷ ︸︸ ︷
(α,x)

is an E-C*-isomorphism. Thus the map

ψn :

(
ˇ︷︸︸︷

SF

)
n −→ (FIT)n

is also an E-C*-isomorphism.

c) For every Y ∈ (FIT)n put

Ÿ : IT−→ Fn , z 7−→ ∑
t∈Tn

(Yt(z)⊗ idK)Vt .

Then Ÿ ∈ { X ∈ C ( IT,Fn) | X(1) ∈ En } for every Y ∈ (FIT)n and the map

φ
n : (FIT)n −→ { X ∈ C ( IT,Fn) | X(1) ∈ En } , Y 7−→ Ÿ

is an E-C*-isomorphism.

d) The map

φ
n ◦ψn :

(
ˇ︷︸︸︷

SF

)
n −→ { X ∈ C ( IT,Fn) | X(1) ∈ En }

is an E-C*-isomorphism. We identify these two full E-C*-algebras by using this

isomorphism.The map

Un

(
ˇ︷︸︸︷

SF

)
n −→ { X ∈ C ( IT,Un Fn) | X(1) ∈Un En }

defined by φ n ◦ψn is a homeomorphism.
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e) For every

X := ∑
t∈Tn

((αt ,Xt)⊗ idK)Vt ∈

(
ˇ︷︸︸︷

SF

)
n

and z ∈ IT,

(φ n
ψnX)(z) = ∑

t∈Tn

((αt +Xt(z))⊗ idK)Vt ∈ Fn ,

(φ n
ψnX)(1) = ∑

t∈Tn

(αt ⊗ idK)Vt ∈ En .

f) Consider the split exact sequence in ME (Definition 4.1.4)

0−→ SF ιSF
−→

ˇ︷︸︸︷
SF

πSF
−→

λSF
←−

E −→ 0 .

Then (
π

SF)
nX = (φ n

ψnX)(1)

for every X ∈

(
ˇ︷︸︸︷

SF

)
n.

g) If F
ϕ→G is a morphism in CE then, by the identification of d), for every X ∈C ( IT,Fn)

with X(1) ∈ En and for every z ∈ IT, ˇ︷︸︸︷
Sϕ

nX

(z) = ϕnX(z) .

a) is obvious.

b) For (α,x),(β ,y) ∈
ˇ︷︸︸︷

SF , γ ∈ E, and z ∈ IT,

(
︷ ︸︸ ︷
(α,x))∗(z) = α

∗+ x(z)∗ =
︷ ︸︸ ︷
(α,x)∗(z) ,

(
︷ ︸︸ ︷
(α,x)(z))(

︷ ︸︸ ︷
(β ,y)(z)) = (α + x(z))(β + y(z)) = αβ +αy(z)+ x(z)β + x(z)y(z) =

=
︷ ︸︸ ︷
(αβ ,αy+βx+ xy)(z) =

︷ ︸︸ ︷
(α,x)(β ,y)(z) ,︷ ︸︸ ︷

(γ,0)(z) = γ ,

so ψ is an E-C*-homomorphism. If
︷ ︸︸ ︷
(α,x) = 0 then for all z ∈ IT

α = α + x(1) = 0 , x(z) = α + x(z) = 0 , x = 0 ,
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so ψ is injective.

Let X ∈ FIT and put α := X(1) ∈ E and

x : IT−→ F , z 7−→ X(z)−X(1) .

Then (α,x) ∈
ˇ︷︸︸︷

SF and for z ∈ IT,︷ ︸︸ ︷
(α,x)(z) = α + x(z) = X(1)+X(z)−X(1) = X(z) .

Thus
︷ ︸︸ ︷
(α,x) = X and ψ is surjective.

By [2] Corollary 2.2.5 and [2] Theorem 2.1.9 a), ψn is an isomorphism.

c) follows from [2] Proposition 2.3.7 and [2] Theorem 2.1.9 a).

d) follows from b) and c).

e) We have

ψnX = ∑
t∈Tn

(
︷ ︸︸ ︷
(αt ,Xt)⊗idK)Vt ,

(φ n
ψnX)(z) = ∑

t∈Tn

((αt +Xt(z))⊗ idK)Vt ∈ Fn ,

(φ n
ψnX)(1) = ∑

t∈Tn

(αt ⊗ idK)Vt ∈ En .

f) and g) follow from e).

DEFINITION 8.1.2 We put for every full E-C*-algebra F, n ∈ IN, and P ∈ Fn,

P̃ : IT−→ Fn , z 7−→ zP+(1E −P) .

By the identification of Lemma 8.1.1 d),

P̃ ∈ { X ∈ C ( IT,Un Fn) | X(1) ∈ En }=Un

(
ˇ︷︸︸︷

SF

)
n

for every P ∈ Pr Fn. Obviously, 0̃ = 1E and 1̃E = z1E .
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PROPOSITION 8.1.3 If F is a full E-C*-algebra, n ∈ IN, and P ∈ Pr Fn−1 then

τ̄

ˇ︷︸︸︷
SF

n P̃ = ˜̄ρF
n P ,

(with the identification of Lemma 8.1.1 d)). Thus we get a well-defined map

νF : Pr F→ −→ un
ˇ︷︸︸︷

SF

with νF P = P̃ for every P ∈ Pr F→ =
⋃

n∈IN
Pr F→n.

For z ∈ IT,

(τ̄

ˇ︷︸︸︷
SF

n P̃)(z) = (AnP̃+Bn)(z) = An(zP+(1E −P))+Bn =

= zAnP+(1E −AnP) = ˜̄ρF
n P(z) .

PROPOSITION 8.1.4 For every full E-C*-algebra F there is a unique group

homomorphism

βF : K0(F)−→ K1(SF) (the Bott map)

such that for every P ∈ Pr F→,

βF [P]0 = (νF P)/∼1=
[
P̃
]

1 .

Let P,Q ∈ Pr F→ with P ∼0 Q. By Proposition 6.2.6, there are m,n ∈ IN, m ≥ n+ 2,
and U ∈Un0 Fm with P,Q ∈ Pr Fn and UPU∗ = Q and so

(UP̃U∗)(z) =UP̃(z)U∗ = zUPU∗+(1E −UPU∗) = Q̃(z)

for every z ∈ IT. Thus UP̃U∗ = Q̃, P̃∼h Q̃, and P̃∼1 Q̃.

Let P,Q ∈ Pr F→ with PQ = 0. We may assume P,Q ∈ Pr Fn−1 with P = PAn and
Q = QBn for some n ∈ IN (Proposition 6.1.3). For every z ∈ IT,

P̃(z) = zPAn +(1E −PAn), Q̃(z) = zQBn +(1E −QBn) ,

(P̃Q̃)(z) = P̃(z)Q̃(z) = zPAn + zQBn +1E −QBn−PAn =
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= z(P+Q)+(1E − (P+Q)) = ˜(P+Q)(z), P̃Q̃ = P̃+Q .

By Proposition 6.1.9, there is a unique group homomorphism

βF : K0(F)−→ K1(SF)

with the required property.

PROPOSITION 8.1.5 Let F be an E-C*-algebra .

a) There is a unique map βF : K0(F)−→ K1(SF) (called the Bott map) such that the

diagram

K0(F)
K0(ι

F )−−−−→ K0(F̌)

βF

y yβF̌

K1(SF) −−−−→
K1(SιF )

K1(SF̌)

is commutative. βF is a group homomorphism.

b) If F is a full E-C*-algebra then the above map βF coincides with the map βF

defined in Proposition 8.1.4.

c) If F
ϕ−→ G is a morphism in ME then the diagram

K0(F)
K0(ϕ)−−−−→ K0(G)

βF

y yβG

K1(SF) −−−−→
K1(Sϕ)

K1(SG)

is commutative.

c) for CE with F
ϕ−→ G unital. For n ∈ IN, P ∈ Pr Fn, and z ∈ IT, by Lemma 8.1.1 g),((

ˇ︷︸︸︷
Sϕ

)
nP̃

)
(z) = zϕnP+(1E −ϕnP) =

(
ϕ̃nP

)
(z) ,

(
ˇ︷︸︸︷

Sϕ

)
nP̃ = ϕ̃nP .
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By Proposition 6.1.10 c), Proposition 8.1.4, and Proposition 7.1.6 c),

K1(Sϕ)βF [P]0 = K1(Sϕ)
[
P̃
]

1
=

=

[(
ˇ︷︸︸︷

Sϕ

)
nP̃

]
1

=
[
ϕ̃nP

]
1
= βG[ϕnP]0 = βGK0(ϕ)[P]0 ,

K1(Sϕ)◦βF = βG ◦K0(ϕ) .

a) By c) for CE , the diagram

K0(F̌)
K0(π

F )−−−−→ K0(E)

βF̌

y yβE

K1(SF̌) −−−−→
K1(SπF )

K1(SE)

is commutative. By Proposition 6.1.12 c) and Corollary 7.3.9 the sequences

0−→ K0(F)
K0(ι

F )−→ K0(F̌)
K0(π

F )−→ K0(E)−→ 0 ,

0−→ K1(SF)
K1(SιF )−→ K1(SF̌)

K1(SπF )−→ K1(SE)−→ 0

are exact, since the sequence

0−→ SF SιF
−→ SF̌

SπF
−→

SλF
←−

SE −→ 0

is split exact. By the above c) for CE , Corollary 6.2.3 a), and Proposition 6.2.2 e),

K1(Sπ
F)◦βF̌ ◦K0(ι

F) = βE ◦K0(π
F)◦K0(ι

F) =

= βE ◦K0(π
F ◦ ι

F) = βE ◦K0(0) = 0 .

Thus
Im(βF̌ ◦K0(ι

F))⊂ Ker K1(Sπ
F) = ImK1(Sι

F) .

The assertion follows now from the fact that K1(SιF) is injective.

b) By c) for CE , the diagram

K0(F)
K0(ι

F )−−−−→ K0(F̌)

βF

y yβF̌

K1(SF) −−−−→
K1(SιF )

K1(SF̌)
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is commutative, with βF defined in Proposition 8.1.4. By a), this βF coincides with βF

defined in a).

c) The following diagrams

F
ϕ−−−−→ G

ιF

y yιG

F̌ −−−−→
ϕ̌

Ǧ

SF
Sϕ−−−−→ SG

SιF

y ySιG

SF̌ −−−−→
Sϕ̌

SǦ

K1(SF)
K1(Sϕ)−−−−→ K1(SG)

K1(SιF )

y yK1(SιG)

K1(SF̌) −−−−→
K1(Sϕ̌)

K1(SĜ)

are obviously commutative (Proposition 7.1.8 a)). So by a) and c) for CE (and Corollary
6.2.3 a), Proposition 7.1.8 a)),

K1(Sι
G)◦βG ◦K0(ϕ) = βǦ ◦K0(ι

G)◦K0(ϕ) = βǦ ◦K0(ϕ̌)◦K0(ι
F) =

= K1(Sϕ̌)◦βF̌ ◦K0(ι
F) = K1(Sϕ̌)◦K1(Sι

F)◦βF = K1(Sι
G)◦K1(Sϕ)◦βF .

The assertion follows now from the fact that K1(SιG) is injective.

8.2 Higman’s Linearization Trick

Throughout this section F denotes a full E-C*-algebra, m,n ∈ IN, and l := 2m−1.

DEFINITION 8.2.1 We shall use the following notation ([4] 11.2):

Trig(n) :=

{
X ∈ C ( IT,GLEn(Fn)) | X(z) =

m

∑
p=−m

apzp, ap ∈ Fn

}
,

Pol(n,m) :=

{
X ∈ C ( IT,GLEn(Fn)) | X(z) =

m

∑
p=0

apzp, ap ∈ Fn

}
,

Pol(n) :=
⋃

m∈IN

Pol(n,m), Lin(n) := Pol(n,1) ,

Pro j(n) :=
{

P̃
∣∣∣ P ∈ Pr Fn

}
.
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LEMMA 8.2.2

a) If X ∈ C ( IT,GLEn(Fn)) then there are k ∈ IN and Y ∈ Pol(n) such that zkX is

homotopic to Y in C ( IT,GLEn(Fn)).

b) If P,Q ∈ Pr Fn such that P̃ and Q̃ are homotopic in C ( IT,GLEn(Fn)) then there are

k,m ∈ IN such that zkP̃ is homotopic to zkQ̃ in Pol(n, l).

a) It is possible to adapt [4] Lemma 11.2.3 to the present situation in order to find a
Z ∈ Trig(n) such that

‖X−Z‖<
∥∥X−1∥∥−1

.

By [4] Proposition 2.1.11, X and Z are homotopic in C ( IT,GLEn(Fn)). There is a k ∈ IN
such that Y := zkZ ∈ Pol(n). Then zkX and Y are homotopic in C ( IT,GLEn(Fn)).

b) The proof of [4] Lemma 11.2.4 (ii) works in this case too.

DEFINITION 8.2.3 The map

{0,1}m −→ INl∪{0}, j 7−→
m

∑
i=1

ji 2i−1

is bijective. We denote by

INl∪{0} −→ {0,1}m, p 7−→ |p|

its inverse. For every i ∈ INm and p,q ∈ INl∪{0} we put

(p,q)i :=


An+i if |p|i = |q|i = 0
C∗n+i if |p|i = 0, |q|i = 1
Cn+i if |p|i = 1, |q|i = 0
Bn+i if |p|i = |q|i = 1

.

LEMMA 8.2.4

a) For p,q,r,s ∈ INl∪{0} and i ∈ INm,

(p,q)i(r,s)i =

{
0 if |q|i 6= |r|i

(p,s)i if |q|i = |r|i
.
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In particular
m

∏
i=1

((p,q)i(r,s)i) =

 0 if q 6= r
m
∏
i=1

(p,s)i if q = r
.

b) For p,q ∈ INl∪{0} and i ∈ INm,

An+i(p,q)i =

{
(p,q)i if |p|i = 0

0 if |p|i = 1
,

(p,q)iAn+i =

{
(p,q)i if |q|i = 0

0 if |q|i = 1
.

In particular

p 6= 0 =⇒
m

∏
i=1

(An+i(p,q)i) = 0 ,

q 6= 0 =⇒
m

∏
i=1

((p,q)iAn+i) = 0 ,

l

∑
r=q

m

∏
i=1

(An+i(r,r−q)i) =

 0 if q 6= 0
m
∏
i=1

An+i if q = 0
.

c)
l
∑

p=0

m
∏
i=1

(p, p)i = 1E .

a) and b) is a long verification.

c) For every p ∈ INl∪{0} put

Jp := { i ∈ INm | |p|i = 0} , Kp := { i ∈ INm | |p|i = 1} .

Then

1E =
m

∏
i=1

(An+i +Bn+i) =
l

∑
p=0

(
∏
i∈Jp

An+i

)(
∏

i∈Kp

Bn+i

)
=

l

∑
p=0

m

∏
i=1

(p, p)i .

LEMMA 8.2.5 Let a ∈ (Fn)
l and

X :=
l

∑
p=1

ap

l

∑
q=p

m

∏
i=1

(q,q− p)i (X ∈ Fm+n) .

Science Publishing Group 229



Chapter 8 Bott Periodicity

a) X2m
= 0.

b) 1E −X is invertible.

a) We put D := INl and for every k ∈ IN and p ∈ Dk,

p(k) :=
k

∑
j=1

p j, a(k)p :=
k

∏
j=1

ap j .

We want to prove by induction that for every k ∈ IN,

Xk = ∑
p∈Dk

a(k)p

l

∑
q=p(k)

m

∏
i=1

(q,q− p(k))i .

The assertion holds for k = 1. Assume the assertion holds for k ∈ IN. Then

Xk+1 = ∑
p∈Dk

∑
p′∈D

a(k)p ap′
l

∑
q=p(k)

l

∑
q′=p′

m

∏
i=1

((q,q− p(k))i(q′,q′− p′)i) .

By Lemma 8.2.4 a),

Xk+1 = ∑
p∈Dk

∑
p′∈D

a(k)p ap′
l

∑
q=p(k)+p′

m

∏
i=1

(q,q− p(k)− p′)i =

= ∑
p∈Dk+1

a(k+1)
p

l

∑
q=p(k+1)

m

∏
i=1

(q,q− p(k+1))i ,

which finishes the inductive proof. Since p(k) ≥ k for every k ∈ IN we get X2m
= 0.

b) By a), 1E +
l
∑

k=1
Xk is the inverse of 1E −X .

PROPOSITION 8.2.6 (Higman’s linearization trick) There is a continuous map

µ : Pol(n, l)−→ Lin(n+m)

such that µX is homotopic to X
(

m
∏
i=1

An+i

)
+

(
1E −

m
∏
i=1

An+i

)
in Pol(n+m,2l + 1) for

every X ∈ Pol(n, l). If X ∈ Pro j(n) then the above homotopy takes place in Lin(n+1).
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Assume X ∈ Pol(n, l) is given by

X =
l

∑
p=0

apzp ,

where ap ∈ Fn for every p ∈ INl ∪{0}. Put

Xp :=
l

∑
q=p

aqzq−p (∈ C ( IT,Fn))

for all p ∈ INl ∪{0} and for all s ∈ [0,1],

Ys := 1E − s
l

∑
p=1

Xp

m

∏
i=1

(0, p)i (∈ C ( IT,Fn+m)) ,

Zs := 1E + s
l

∑
q=1

zq
l

∑
r=q

m

∏
i=1

(r,r−q)i (∈ C ( IT,Fn+m)) .

By Lemma 8.2.4 a),

Ys(1E + s
l

∑
p=1

Xp

m

∏
i=1

(0, p)i) = (1E + s
l

∑
p=1

Xp

m

∏
i=1

(0, p)i)Ys =

= 1E + s2
l

∑
p,q=1

XpXq

m

∏
i=1

((0, p)i(0,q)i) = 1E ,

so Ys is invertible. By Lemma 8.2.5 b), Zs is also invertible. Thus for every s ∈ [0,1], Ys

and Zs are homotopic to 1E in C ( IT,GL(Fn+m)) and belong therefore to Pol(n+m, l). By
Lemma 8.2.4 c),

Z1 =
l

∑
q=0

zq
l

∑
r=q

m

∏
i=1

(r,r−q)i .

Put

µX := 1E −
m

∏
i=1

An+i +
l

∑
p=0

ap

m

∏
i=1

(0, p)i− z
l

∑
p=1

m

∏
i=1

(p, p−1)i (∈ C ( IT,Fn+m)) .

For z ∈ IT,

((µX)Z1)(z) =
l

∑
p=0

zp
l

∑
q=p

m

∏
i=1

(q,q− p)i−
l

∑
p=0

zp
l

∑
q=p

m

∏
i=1

(An+i(q,q− p)i)+
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+
l

∑
p,q=0

apzq
l

∑
r=q

m

∏
i=1

((0, p)i(r,r−q)i)−
l

∑
q=0

zq+1
l

∑
p=1

l

∑
r=q

m

∏
i=1

((p, p−1)i(r,r−q)i) .

By Lemma 8.2.4 b),

l

∑
p=0

zp
l

∑
q=p

m

∏
i=1

(An+i(q,q− p)i) =
m

∏
i=1

An+i

and by Lemma 8.2.4 a),

l

∑
p,q=0

apzq
l

∑
r=q

m

∏
i=1

((0, p)i(r,r−q)i) =
l

∑
q=0

zq
l

∑
p=q

ap

m

∏
i=1

(0, p−q)i =

=
l

∑
q=0

zq
l−q

∑
r=0

aq+r

m

∏
i=1

(0,r)i =
l

∑
r=0

l−r

∑
q=0

zqaq+r

m

∏
i=1

(0,r)i =

=
l

∑
r=0

l

∑
s=r

zs−ras

m

∏
i=1

(0,r)i =
l

∑
r=0

Xr

m

∏
i=1

(0,r)i ,

l

∑
q=0

zq+1
l

∑
p=1

l

∑
r=q

m

∏
i=1

((p, p−1)i(r,r−q)i) =

=
l

∑
q=0

zq+1
l

∑
p=q+1

m

∏
i=1

(p, p−q−1)i =
l

∑
q=1

zq
l

∑
p=q

m

∏
i=1

(p, p−q)i .

Thus by Lemma 8.2.4 c),

((µX)Z1)(z) =
l

∑
q=0

zq
l

∑
p=q

m

∏
i=1

(p, p−q)i−
m

∏
i=1

An+i+

+
l

∑
r=0

Xr

m

∏
i=1

(0,r)i−
l

∑
q=1

zq
l

∑
p=q

m

∏
i=1

(p, p−q)i =

=
l

∑
p=0

m

∏
i=1

(p, p)i−
m

∏
i=1

An+i +
l

∑
r=0

Xr

m

∏
i=1

(0,r)i = 1E −
m

∏
i=1

An+i +
l

∑
p=0

Xp

m

∏
i=1

(0, p)i .

By Lemma 8.2.4 a),b), for z ∈ IT,

(Y1(µX)Z1)(z) = 1E −
m

∏
i=1

An+i +
l

∑
p=0

Xp

m

∏
i=1

(0, p)i−
l

∑
p=1

Xp

m

∏
i=1

(0, p)i+

+
l

∑
p=1

Xp

m

∏
i=1

((0, p)iAn+i)−
l

∑
p=1

l

∑
q=0

XpXq

m

∏
i=1

((0, p)i(0,q)i) =
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= 1E −
m

∏
i=1

An+i +X0

m

∏
i=1

(0,0)i = 1E −
m

∏
i=1

An+i +X
m

∏
i=1

An+i .

Since 1E −
m
∏
i=1

An+i +X−1
m
∏
i=1

An+i is the inverse of Y1(µX)Z1 it follows that Y1(µX)Z1

and µX are invertible, i.e. they belong to C ( IT,GL(Fn+m)). Thus for every s ∈ [0,1],
Ys(µX)Zs ∈ C ( IT,GL(Fn+m)). Let z ∈ IT and let

[0,1]−→ GL(Fn), s 7−→ xs

be a continuous map with x0 = X(z) and x1 = 1E . Since 1E−
m
∏
i=1

An+i +x−1
s

m
∏
i=1

An+i is the

inverse of 1E −
m
∏
i=1

An+i + xs
m
∏
i=1

An+i for every s ∈ [0,1] it follows that the map

[0,1]−→ GL(Fn+m), s 7−→ 1E −
m

∏
i=1

An+i + xs

m

∏
i=1

An+i

is well-defined and it is a homotopy from (Y1(µX)Z1)(z) to 1E i.e.
Y1(µX)Z1 ∈ C ( IT,GL0(Fn+m)) and Y1(µX)Z1 ∈ Pol(n+m, l). By the above, for every
s ∈ [0,1], Ys(µX)Zs ∈ C ( IT,GL0(Fn+m)), so Ys(µX)Zs ∈ Pol(n+m,2l +1). Hence µX is

homotopic to X
(

m
∏
i=1

An+i

)
+

(
1E −

m
∏
i=1

An+i

)
in Pol(n + m,2l + 1) and

µX ∈ Lin(n+m).

In order to prove the last assertion remark that there is a P ∈ Pr Fn with X = P̃ =

(1E −P)+ zP. Then m = l = 1, a0 = 1E −P, a1 = P, X1 = a0 = P,

µX = 1E −PAn+1 +PC∗n+1− zCn+1 ,

and for every s ∈ [0,1],

Ys = 1E − sPC∗n+1 , Zs := 1E + szCn+1 , Ys(µX)Zs ∈ Lin(n+1) .

Thus µX is homotopic to Y1(µX)Z1 in Lin(n+1).

8.3 The Periodicity

Throughout this section F denotes a full E-C*-algebra, m,n ∈ IN, and l := 2m−1.
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LEMMA 8.3.1 If X ∈ C ( IT,GL(Fn)) and X(1) ∈ GLEn(Fn) then

X ∈ C ( IT,GLEn(Fn)) .

Let θ ∈ [0,2π[ and for every s ∈ [0,1] put

Ys : IT−→ GL(Fn) , z 7−→ X(e−isz) .

Then Y0(eiθ ) = X(eiθ ) and Yθ (eiθ ) = X(1) so X(eiθ ) is homotopic to X(1) in GL(Fn).
Thus X(eiθ ) ∈ GLEn(Fn) and X ∈ C ( IT,GLEn(Fn)).

PROPOSITION 8.3.2 The following are equivalent for every X ∈ Fn.

a) X̃ ∈ Lin(n).

b) z ∈ IT\{1}=⇒ X̃(z) ∈ GL(Fn).

c) X̃ is a generalized idempotent of Fn ([4] Definition 11.2.8).

a⇒ b is trivial.

b⇒ a. By Lemma 8.3.1, since X̃(1) = 1E , X̃ ∈ C ( IT,GLEn(Fn)) so X̃ ∈ Lin(n).

b⇔ c. For z ∈ IT\{1},

X̃(z) = (z−1)X +1E = (z−1)
(

X− 1
1− z

1E

)
.

Since {
1

1− z

∣∣∣∣ z ∈ IT\{1}
}
=

{
α ∈ IC | real(α) =

1
2

}
,

b) holds iff X −α1E is invertible for every α ∈ IC with real(α) = 1
2 , which is equivalent

to c).

LEMMA 8.3.3 For z ∈ IT,

zAn +Bn ∼h An + zBn in Un En .
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We have

(Cn +C∗n)(zAn +Bn)(Cn +C∗n) = (zCn +C∗n)(Cn +C∗n) = zBn +An

and the assertion follows from Proposition 6.2.5 a).

LEMMA 8.3.4 For z ∈ IT,

zl
m

∏
i=1

An+i +
l

∑
p=1

m

∏
i=1

(p, p)i ∼h

m

∏
i=1

An+i + z
l

∑
p=1

m

∏
i=1

(p, p)i in Un En+m .

Let k ∈ INl and let j ∈ INm with |k| j = 1. By Lemma 8.3.3,

zl−k+1
m

∏
i=1

An+i + z
k−1

∑
p=1

m

∏
i=1

(p, p)i +
l

∑
p=k

m

∏
i=1

(p, p)i =

=

(
zl−k

m

∏
i=1

An+i +
m

∏
i=1

(k,k)i

)
(zAn+ j +(k,k) j)+

+z
k−1

∑
p=1

m

∏
i=1

(p, p)i +
l

∑
p=k+1

m

∏
i=1

(p, p)i ∼h

∼h

(
zl−k

m

∏
i=1

An+i +
m

∏
i=1

(k,k)i

)
(An+ j + z(k,k) j)+

+z
k−1

∑
p=1

m

∏
i=1

(p, p)i +
l

∑
p=k+1

m

∏
i=1

(p, p)i =

= zl−k
m

∏
i=1

An+i + z
k

∑
p=1

m

∏
i=1

(p, p)i +
l

∑
p=k+1

m

∏
i=1

(p, p)i

in Un En+m. The assertion follows now by induction on k ∈ INl .

LEMMA 8.3.5 Let P,Q ∈ Pr Fn.

a) For every z ∈ IT, ˜︷ ︸︸ ︷
P

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
(z) =
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= P̃(z)

(
m

∏
i=1

An+i

)
+ z

(
1E −

m

∏
i=1

An+i

)
.

b) If (with the identification of Lemma 8.1.1 d))

P̃

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
∼h

∼h Q̃

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
in Un

(
ˇ︷︸︸︷

SF

)
n+m ,

then ˜︷ ︸︸ ︷
P

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
∼h

∼h

˜︷ ︸︸ ︷
Q

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
in Un

(
ˇ︷︸︸︷

SF

)
n+m .

a) We have ˜︷ ︸︸ ︷
P

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
(z) =

= zP

(
m

∏
i=1

An+i

)
+ z

(
1E −

m

∏
i=1

An+i

)
+

m

∏
i=1

An+i+

+

(
1E −

m

∏
i=1

An+i

)
−P

(
m

∏
i=1

An+i

)
−

(
1E −

m

∏
i=1

An+i

)
=

= P̃(z)

(
m

∏
i=1

An+i

)
+ z

(
1E −

m

∏
i=1

An+i

)
.

b) Let

[0,1]−→Un

(
ˇ︷︸︸︷

SF

)
n+m, s 7−→Us

be a continuous map with

U0 = P̃

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
,
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U1 = Q̃

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
.

Put U ′s := Us

(
m
∏
i=1

An+i

)
+ z
(

1E −
m
∏
i=1

An+i

)
for every s ∈ [0,1]. Then s 7→ U ′s is a

continuous path in Un

(
ˇ︷︸︸︷

SF

)
n+m and by a),

U ′0 =U0

(
m

∏
i=1

An+i

)
+ z

(
1E −

m

∏
i=1

An+i

)
=

= P̃

(
m

∏
i=1

An+i

)
+ z

(
1E −

m

∏
i=1

An+i

)
=

=

˜︷ ︸︸ ︷
P

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
(z) ,

U ′1 =

˜︷ ︸︸ ︷
Q

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
(z) .

PROPOSITION 8.3.6

a) If U ∈Un

(
ˇ︷︸︸︷

SF

)
n then there are k,m ∈ IN and P ∈ Pr Fn+m such that (with the

identification of Lemma 8.1.1 d))

(zkU)

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
∼h P̃ in Un

(
ˇ︷︸︸︷

SF

)
n+m .

b) Let P,Q ∈ Pr Fn with P̃∼h Q̃ in Un

(
ˇ︷︸︸︷

SF

)
n. Then there is an m ∈ IN such that

P

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
∼h

∼h Q

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
in Pr Fn+m .
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a) By Proposition 8.2.2 a), there are k,m ∈ IN, k < 2m, and X ∈ Pol(n, l) such that zkU

is homotopic to X in C ( IT,GLE(Fn)). By Proposition 8.2.6, there is a Y ∈ Lin(n+m) with

X

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
∼h Y in Pol(n+m,2l +1) .

By [4] Lemma 11.2.12 (i), there is a P ∈ Pr Fn+m with Y ∼h P̃ in Lin(n+m). Thus

(zkU)

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
∼h

∼h X

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
∼h Y ∼h P̃

in C ( IT,GLE(Fn+m)). By [4] Proposition 2.1.8 (iii) and the identification of Lemma 8.1.1
d),

(zkU)

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
∼h P̃ in Un

(
ˇ︷︸︸︷

SF

)
n+m .

b) By Proposition 8.2.2 b), there are k,m∈ IN, k < 2m, such that zkP̃∼h zkQ̃ in Pol(n, l).
By Lemma 8.3.4 and Lemma 8.2.4 c),

zl

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
∼h

(
m

∏
i=1

An+i

)
+ z

(
1E −

m

∏
i=1

An+i

)

in Un En+m. By Lemma 8.3.5 a),

˜︷ ︸︸ ︷
P

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
(z) =

=

((
m

∏
i=1

An+i

)
+ z

(
1E −

m

∏
i=1

An+i

))
×

×

(
P̃(z)

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

))
∼h

∼h

(
zl

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

))(
P̃(z)+

(
1E −

m

∏
i=1

An+i

))
=
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= zlP̃(z)

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
∼h

∼h zlQ̃(z)

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
∼h

∼h

˜︷ ︸︸ ︷
Q

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
(z)

in Pol(n+m, l). By Proposition 8.2.6,

P̃

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
=

=

˜︷ ︸︸ ︷
P

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
∼h

∼h µ


˜︷ ︸︸ ︷

P

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)∼h

∼h µ


˜︷ ︸︸ ︷

Q

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)∼h

∼h Q̃

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
in Lin(n+m). By Lemma 8.3.5 a),

˜︷ ︸︸ ︷
P

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
= P̃

(
m

∏
i=1

An+i

)
+ z

(
1E −

m

∏
i=1

An+i

)
∼h

∼h Q̃

(
m

∏
i=1

An+i

)
+ z

(
1E −

m

∏
i=1

An+i

)
=

˜︷ ︸︸ ︷
Q

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
in Lin(n+m). The assertion follows now from [4] Lemma 11.2.12 (ii).
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THEOREM 8.3.7 The Bott map is bijective.

Step 1 Surjectivity

Let a ∈ K1(SF). There are n ∈ IN and U ∈Un

(
ˇ︷︸︸︷

SF

)
n with a = [U ]1. By Proposition

8.3.6 a), there are m, p ∈ IN, p≥ n, and P ∈ Pr Fp+m such that

(zlU)

(
m

∏
i=1

Ap+i

)
+

(
1E −

m

∏
i=1

Ap+i

)
∼h P̃ in Un

(
ˇ︷︸︸︷

SF

)
p+m .

By Lemma 8.3.4 and Lemma 8.2.4 c),

˜︷ ︸︸ ︷
1E −

m

∏
i=1

Ap+i = z

(
1E −

m

∏
i=1

Ap+i

)
+

(
m

∏
i=1

Ap+i

)
∼h

∼h

(
1E −

m

∏
i=1

Ap+i

)
+ zl

(
m

∏
i=1

Ap+i

)
in Un Ep+m

so by Proposition 7.1.3 and Proposition 8.1.4,

βF

(
[P]0−

[
1E −

m

∏
i=1

Ap+i

]
0

)
= [P̃]1−


˜︷ ︸︸ ︷

1E −
m

∏
i=1

Ap+i


1

=

=

[
(zlU)

(
m

∏
i=1

Ap+i

)
+

(
1E −

m

∏
i=1

Ap+i

)]
1

−

−

[(
1E −

m

∏
i=1

Ap+i

)
+ zl

(
m

∏
i=1

Ap+i

)]
1

=

=

[(
(zlU)

(
m

∏
i=1

Ap+i

)
+

(
1E −

m

∏
i=1

Ap+i

))
×

×

((
1E −

m

∏
i=1

Ap+i

)
+ zl

(
m

∏
i=1

Ap+i

))∗]
1

=

=

[
U

(
m

∏
i=1

Ap+i

)
+

(
1E −

m

∏
i=1

Ap+i

)]
1

= [U ]1 = a .
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Step 2 Injectivity

Let a ∈ K0(F) with βF a = 0. By Proposition 6.1.5 d), there are P,Q ∈ Pr Fn, PQ = 0,

such that a = [P]0− [Q]0. Then [P̃]1 = [Q̃]1, so U := P̃Q̃∗ ∈ unEn

ˇ︷︸︸︷
SF . Then

U = ((z−1)P+1E)((z̄−1)Q+1E)) = (z−1)P+(z̄−1)Q+1E , U(1) = 1E .

By Proposition 7.1.3, there is an m ∈ IN such that

V :=U

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
= τ

F
n+m,nU ∈UnEn+m

(
ˇ︷︸︸︷

SF

)
n+m .

Then there is a W ∈Un En+m with V ∼h W in Un

(
ˇ︷︸︸︷

SF

)
n+m. By the above,

W =W (1)∼h V (1) = 1E , V ∼h 1E in Un

(
ˇ︷︸︸︷

SF

)
n+m .

By Proposition 7.1.3,

P̃

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
= τ

F
n+m,nP̃ = (τF

n+m,nU)(τF
n+m,nQ̃) =

=V (τF
n+m,nQ̃)∼h Q̃

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
in Un

(
ˇ︷︸︸︷

SF

)
n+m ,

so by Proposition 8.3.5 b),

˜︷ ︸︸ ︷
P

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
∼h

∼h

˜︷ ︸︸ ︷
Q

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
in Un

(
ˇ︷︸︸︷

SF

)
n+m .

Put

P′ := P

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
,
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Q′ := Q

(
m

∏
i=1

An+i

)
+

(
1E −

m

∏
i=1

An+i

)
.

By Proposition 8.3.6 b), there are m′, p′ ∈ IN such that

P′
(

m′

∏
j=1

Ap′+ j

)
+

(
1E −

m′

∏
j=1

Ap′+i

)
∼h

∼h Q′
(

m′

∏
j=1

Ap′+i

)
+

(
1E −

m′

∏
j=1

Ap′+i

)
in Pr Fp′+m′ .

It follows successively [
P′

m′

∏
j=1

Ap′+ j

]
0

=

[
Q′

m′

∏
j=1

Ap′+ j

]
0

,

[
P

(
m

∏
i=1

An+i

)(
m′

∏
j=1

Ap′+ j

)]
0

=

[
Q

(
m

∏
i=1

An+i

)(
m′

∏
j=1

Ap′+ j

)]
0

,

[P]0 = [Q]0 , a = [P]0− [Q]0 = 0 .

Remark. By Theorem 8.3.7 and Proposition 8.1.5 c), the functor K0 is determined by
the functor K1.

COROLLARY 8.3.8 (The six-term sequence) Let

0−→ F
ϕ−→ G

ψ−→ H −→ 0

be an exact sequence in ME .

a) The sequence

0−→ SF
Sϕ−→ SG

Sψ−→ SH −→ 0

is exact. Let

δ2 : K1(SH)−→ K0(SF)

be its associated index map (Corollary 7.2.3) and put (Proposition 8.1.5, Theorem
7.3.2)

δ0 := θ
−1
F ◦δ2 ◦βH : K0(H)−→ K1(F) .
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We call δ0 and δ1 the six-term index maps. If we denote by δ̄0 the corresponding

six-term index map associated to the exact sequence in ME (with obvious notation)

0−→ SF
ϕ−→CF

ψ−→ F −→ 0

then δ̄0 = βF .

b) The six-term sequence

K0(F)
K0(ϕ)−−−−→ K0(G)

K0(ψ)−−−−→ K0(H)

δ1

x yδ0

K1(H) ←−−−−
K1(ψ)

K1(G) ←−−−−
K1(ϕ)

K1(F)

is exact.

c) If F (resp. H) is K-null (e.g. homotopic to {0}) then Ki(G)
Ki(ψ)−→ Ki(H) (resp.

Ki(F)
Ki(ϕ)−→ Ki(G)) is a group isomorphism for every i ∈ {0,1}.

d) If G is K-null (e.g. homotopic to {0}) then

K0(H)
δ0−→ K1(F) , K1(H)

δ1−→ K0(F)

are group isomorphisms.

e) If ϕ is K-null (e.g. factorizes through null) then the sequences

0−→ K0(G)
K0(ψ)−→ K0(H)

δ0−→ K1(F)−→ 0 ,

0−→ K1(G)
K1(ψ)−→ K1(H)

δ1−→ K0(F)−→ 0

are exact.

f) If ψ is K-null (e.g. factorizes through null) then the sequences

0−→ K0(H)
δ0−→ K1(F)

K1(ϕ)−→ K1(G)−→ 0 ,

0−→ K1(H)
δ1−→ K0(F)

K0(ϕ)−→ K0(G)−→ 0

are exact.

g) The six-term index maps of a split exact sequence are equal to 0.
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a) is easy to see.

b) By Theorem 8.3.7, βH is an isomorphism. By Theorem 7.2.9, the sequences

K1(F)
K1(ϕ)−→ K1(G)

K1(ψ)−→ K1(H)
δ1−→ K0(F)

K0(ϕ)−→ K0(G)
K0(ψ)−→ K0(H) ,

K1(SG)
K1(Sψ)−→ K1(SH)

δ2−→ K0(SF)
K0(Sϕ)−→ K0(SG)

are exact. By Proposition 8.1.5 c) and Proposition 7.3.8, the diagrams

K0(G)
K0(ψ)−−−−→ K0(H)

βG

y yβH

K1(SG) −−−−→
K1(Sψ)

K1(SH)

K1(F)
K1(ϕ)−−−−→ K1(G)

θF

y yθG

K0(SF) −−−−→
K0(Sϕ)

K0(SG)

are commutative. It follows

δ0 ◦K0 (ψ) = θ
−1
F ◦δ2 ◦βH ◦K0 (ψ) = θ

−1
F ◦δ2 ◦K1 (Sψ)◦βG = 0 ,

ImK0 (ψ)⊂ Ker δ0. Let a ∈ Ker δ0. Then δ2βHa = θF δ0a = 0, so there is a b ∈ K1 (SG)

with K1 (Sψ)b = βHa. It follows

a = β
−1
H K1 (Sψ)b = K0 (ψ)β

−1
G b ∈ ImK0 (ψ) , Ker δ0 ⊂ ImK0 (ψ) .

c) The assertion follows immediately from b). By Proposition 7.1.8 e), a
null-homotopic E-C*-algebra is K-null.

d) The proof is similar to the proof of c).

e) and f) follow from b) and Proposition 7.1.8 f).

g) By Proposition 6.2.9 and Corollary 7.3.9 (with the notation of b)) K0 (ϕ) and K1 (ϕ)

are injective and K0 (ψ) and K1 (ψ) are surjective and the assertion follows from b).

COROLLARY 8.3.9 Let us consider the following commutative diagram in ME

0 −−−−→ F
ϕ−−−−→ G

ψ−−−−→ H −−−−→ 0

γ

y α

y yβ

0 −−−−→ F ′ −−−−→
ϕ ′

G′ −−−−→
ψ ′

H ′ −−−−→ 0 ,
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where the horizontal lines are exact.

a) (Commutativity of the six-term index maps) The diagrams (with obvious

notation)

K1(H)
δ1−−−−→ K0(F)

K1(β )

y yK0(γ)

K1(H ′) −−−−→
δ ′1

K0(F ′)

K0(H)
δ0−−−−→ K1(F)

K0(β )

y yK1(γ)

K0(H ′) −−−−→
δ ′0

K1(F ′)

are commutative. If Ki (F) = Ki (F ′), Ki (H) = Ki (H ′), and Ki (β ) and Ki (γ) are

the identity maps for all i ∈ {0,1} then δi = δ ′i for all i ∈ {0,1}.

b) The diagram (with obvious notation)

K0(F) K0(F)
K0(ϕ)−−−−→ K0(G)

K0(ψ)−−−−→ K0(H) K0(H)

=

y K0(γ)

y K0(α)

y yK0(β )

y=

K0(F)
K0(γ)−−−−→ K0(F ′)

K0(ϕ
′)−−−−→ K0(G′)

K0(ψ
′)−−−−→ K0(H ′)

K0(β )←−−−− K0(H)

δ1

x δ ′1

x yδ ′0

yδ0

K1(H) −−−−→
K1(β )

K1(H ′) ←−−−−
K1(ψ ′)

K1(G′) ←−−−−
K1(ϕ ′)

K1(F ′) ←−−−−
K1(γ)

K1(F)

=

x K1(β )

x K1(α)

x xK1(γ)

x=

K1(H) K1(H) ←−−−−
K1(ψ)

K1(G) ←−−−−
K1(ϕ)

K1(F) K1(F)

is commutative.

a) The commutativity of the first diagram was proved in Proposition 7.2.4. By
Proposition 7.3.8, the diagram

K1(F)
K1(γ)−−−−→ K1(F ′)

θF

y yθF ′

K0(SF) −−−−→
K0(Sγ)

K0(SF ′)
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is commutative. By Proposition 7.2.4, the diagram

K1(SH)
δ2−−−−→ K0(SF)

K1(Sβ )

y yK0(Sγ)

K1(SH ′) −−−−→
δ ′2

K0(SF ′)

is commutative, where δ2 and δ ′2 are defined in Corollary 8.3.8 a). By Proposition 8.1.5
c), the diagram

K0(H)
K0(β )−−−−→ K0(H ′)

βH

y yβH′

K1(SH) −−−−→
K1(Sβ )

K1(SH ′)

is commutative. It follows, by the definition of δ0 (Corollary 8.3.8 a)),

K1(γ)◦δ0 = K1(γ)◦θ
−1
F ◦δ2 ◦βH = θ

−1
F ′ ◦K0(Sγ)◦δ2 ◦βH =

= θ
−1
F ′ ◦δ

′
2 ◦K1(Sβ )◦βH = θ

−1
F ′ ◦δ

′
2 ◦βH ′ ◦K0(β ) = δ

′
0 ◦K0(β ) .

b) follows from a) and Corollary 8.3.8 b).
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Chapter 9

Variation of the Parameters

Throughout this chapter we endow {0,1} with the structure of o group by identifying
it with ZZ2 .





9.1 Changing E

9.1 Changing E

Let E ′ be a commutative unital C*-algebra, φ : E −→ E ′ a unital C*-homomorphism,
and

f ′ : T ×T −→Un E ′ , (s, t) 7−→ φ f (s, t) .

Then f ′ ∈ F (T,E ′) and we may define E ′n with respect to f ′ for every n ∈ IN like in
Definition 5.0.2.

Let n ∈ IN and put

C′n := ∑
t∈Tn

((φCn,t)⊗ idK)V
f ′

t (∈ E ′n) .

For every s ∈ Tn−1,

∑
t∈Tn

(( f (s−1t, t)Cn,ts−1)⊗ idK)V
f

t =V f
s Cn =

=CnV f
s = ∑

t∈Tn

(( f (ts−1,s)Cn,ts−1)⊗ idK)V
f

t

so by [2] Theorem 2.1.9 a),

f (s−1t, t)Cn,s−1t = f (ts−1,s)Cn,ts−1

for every t ∈ Tn. It follows

f ′(s−1t, t)C′n,s−1t = f ′(ts−1,s)C′n,ts−1 , V f ′
s C′n =C′nV f ′

s , C′n ∈ (E ′n−1)
c .

Thus (C′n)n∈IN satisfies the conditions of Axiom 5.0.3 and we may construct a K-theory
with respect to T, E ′, f ′, and (C′n)n∈IN, which we shall denote by K′.

Let F be an E ′-C*-algebra. We denote by F̄ or by Φ(F) the E-C*-algebra obtained by
endowing the C*-algebra F with the exterior multiplication

E×F −→ F, (α,x) 7−→ (φα)x .

If F
ϕ−→ G is a morphism in ME ′ , then F̄

ϕ̄−→ Ḡ is a morphism in ME , in a natural way.

Let F be an E ′-C*-algebra and n ∈ IN. We put for every

X = ∑
t∈Tn

((αt ,xt)⊗ idK)V
f

t ∈ ˇ̄Fn ,
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X ′ := ∑
t∈Tn

((φαt ,xt)⊗ idK)V
f ′

t (∈ F̌n)

and set
φF,n : ˇ̄Fn −→ F̌n , X 7−→ X ′ .

Then φF,n is a unital C*-homomorphism (surjective or injective if φ is so ([2] Theorem
2.1.9 a))) such that φF,n(UnEn

ˇ̄Fn) ⊂UnE ′n F̌n and φF,n ◦σ F̄
n = σF

n ◦φF,n. Thus we get for
every i ∈ {0,1} an associated group homomorphism Φi,F : Ki(F̄)−→ K′i (F).

Let E ′′ be a unital commutative C*-algebra, φ ′ : E ′ −→ E ′′ a unital C*-homomorphism,
and φ ′′ := φ ′ ◦φ . Then we may do similar constructions for φ ′ and φ ′′ as we have done
for φ . If F is an E ′′-C*-algebra, Φ′(F) and Φ′′(F) the corresponding E ′-C*-algebra and
E-C*-algebra, respectively, then Φ′′(F) = Φ(Φ′(F)). If Φ′i and Φ′′i are the equivalents of
Φi with respect to φ ′ and φ ′′, respectively, then Φ′′i,F = Φ′i,F ◦Φi,Φ′(F) for every i ∈ {0,1}.
If E ′′ = E and φ ′′ = idE then C′′n = Cn for every n ∈ IN and for every E-C*-algebra F ,
Φ′′(F) = F and Φ′′i,F = idKi(F) for every i ∈ {0,1}. If in addition φ ′′′ := φ ◦φ ′ = idE ′ then
C′′′n = C′n for every n ∈ IN and for every E ′-C*-algebra F , Φ′(Φ(F)) = F and Φ′i,Φ(F) ◦
Φi,F = idK′i (F) for every i ∈ {0,1}, i.e. the K-theory and the K′-theory ”coincide”.

Remark. Let P ∈ Pr E, 0 < P < 1E , and put

P f : T ×T −→Un PE , (s, t) 7−→ P f (s, t) .

Then P f ∈F (T,PE) and we denote by PK the K-theory with respect to T, PE, P f , and
(PCn)n∈IN. Then for every E-C*-algebra F and i ∈ {0,1}

Ki(F)≈ ((PK)i(PF))× (((1E −P)K)i((1E −P)F)) .

If F
ϕ−→ G is a morphism in ME then

Pϕ : PF −→ PG , Px 7−→ Pϕx

is a morphism in MPE and

Ki(ϕ) = (PK)i(Pϕ)× ((1E −P)K)i((1E −P)ϕ)

for every i ∈ {0,1}.

PROPOSITION 9.1.1 We use the above notation and assume i ∈ {0,1}.
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a) If F
ϕ−→ G is a morphism in ME ′ then the diagram

Ki(F̄)
Ki(ϕ̄)−−−−→ Ki(Ḡ)

Φi,F

y yΦi,G

K′i (F) −−−−→
K′i (ϕ)

K′i (G)

is commutative.

b) For every E ′-C*-algebra F the diagram

K0(F̄)
βF̄−−−−→ K1(SF)

Φ0,F

y yΦ1,SF

K′0(F) −−−−→
β ′F

K′1(SF) ,

is commutative, where β ′F denotes the Bott map in the K′-theory.

c) If

0−→ F
ϕ−→ G

ψ−→ H −→ 0

is an exact sequence in ME ′ then the diagram

K1(H̄)
δ1−−−−→ K0(F̄)

Φ1,H

y yΦ0,F

K′1(H) −−−−→
δ ′1

K′0(F)

is commutative, where δ ′1 denotes the index maps associated to the above exact

sequences in the K′-theory.

a) For every n ∈ IN and

X = ∑
t∈Tn

((αt ,xt)⊗ idK)V
f

t ∈ ˇ̄Fn ,

ϕ̌nφF,nX = ∑
t∈Tn

(((φαt),ϕxt)⊗ idK)V
f ′

t = φG,n ˇ̄ϕnX .

b) For every n ∈ IN and P ∈ Pr ˇ̄Fn,

φSF,nP̃ = (P̃)′ = P̃′ = φ̃F,nP .
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c) Let n ∈ IN and U ∈ Un ˇ̄Hn−1. By Proposition 7.2.1 a), there are V ∈ Un ˇ̄Gn and
P ∈ Pr ˇ̄Fn such that

ˇ̄ψnV = AnU +BnU∗ , ˇ̄ϕnP =VAnV ∗ .

Then
ψ̌nφG,nV = φH,n ˇ̄ψnV = A′n(φH,n−1U)+B′n(φH,n−1U)∗ ,

ϕ̌nφF,nP = φG,n ˇ̄ϕnP = (φG,nV )A′n(φG,nV )∗

so by Corollary 7.2.3,

δ
′
1Φ1,H [U ]1 = δ

′
1[φH,n−1U ]1 = [φF,nP]0 = Φ0,F [P]0 = Φ0,F δ1[U ]1

δ
′
1 ◦Φ1,H = Φ0,F ◦δ1 .

LEMMA 9.1.2 Let F,G be C*-algebras, ϕ : F −→ G a surjective C*-homomorphism,

and

ψ : C ([0,1],F)−→ C ([0,1],G) , x 7−→ ϕ ◦ x .

a) ψ is surjective.

b) Assume F unital and let v ∈Un C ([0,1],G) such that there is an x ∈Un F with

ϕx = v(0). Then there is a u ∈Un C ([0,1],F) with ψu = v and u(0) = x.

a) Let y be an element of C ([0,1],G) which is piecewise linear, i.e. there is a family

0 = s1 < s2 < · · ·< sn−1 < sn = 1

such that for every i ∈ INn−1 and t ∈ [0,1],

y((1− t)si + tsi+1) = (1− t)y(si)+ ty(si+1) .

Since ϕ is surjective, there is a family (xi)i∈INn in F with ϕxi = y(si) for every i ∈ INn.
Define x : [0,1]−→ F by putting

x((1− t)si + tsi+1) := (1− t)xi + txi+1

for every i ∈ INn−1 and t ∈ [0,1]. For i ∈ INn−1 and t ∈ [0,1],

(ψx)((1− t)si + tsi+1) = ϕ((1− t)xi + txi+1) =
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= (1− t)y(si)+ ty(si+1) = y((1− t)si + tsi+1) ,

so ψx = y, y∈ Imψ . Since the set of elements of C ([0,1],G), which are piecewise linear,
is dense in C ([0,1],G) and Imψ is closed (as C*-homomorphism), ψ is surjective.

b) Let

w : [0,1]−→UnG , s 7−→ v(0)∗v(s) .

Then w ∈Un C ([0,1],G) and w(0) = 1G. Put

wt : [0,1]−→UnG , s 7−→ w(st)

for every t ∈ [0,1]. Then

[0,1]−→Un C ([0,1],G) , t 7−→ wt

is a continuous path with w1 = w and w0 = 1C ([0,1],G). Thus

w ∈Un0 C ([0,1],G) .

By a), ψ is surjective, so by [4] Lemma 2.1.7 (i), there is a u′ ∈ Un C ([0,1],F) with
ψu′ = w. Put

u : [0,1]−→UnF , s 7−→ xu′(0)∗u′(s) .

Then u ∈Un C ([0,1],F), u(0) = x, and

(ψu)(s) = ϕ(u(s)) = ϕ(xu′(0)∗u′(s)) = ϕ(x)((ψu′)(0))∗((ψu′)(s)) =

= v(0)w(0)∗w(s) = v(0)1Gv(0)∗v(s) = v(s)

for every s ∈ [0,1], i.e. ψu = v.

THEOREM 9.1.3 Φi,F is a group isomorphism for every i ∈ {0,1} and for every E ′-C*-

algebra F.

By Proposition 9.1.1 b), Φ0,F = (β ′F)
−1 ◦Φ1,SF ◦βF̄ , so it suffices to prove the assertion

for Φ1,F only. Let n ∈ IN and U ∈Un F̌n. Put V :=U(σF
n U)∗ ∼1 U . Since σF

n V = 1E ′ , V

has the form

V = ∑
t∈Tn

((αt ,xt)⊗ idK)V
f ′

t
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with αt = δ1,t1E ′ and xt ∈ F for every t ∈ Tn. If we put

W := ∑
t∈Tn

((δ1,t1E ,xt)⊗ idK)V
f

t

then φF,nW =V and we get Φ1,F [W ]1 = [V ]1 = [U ]1, so Φ1,F is surjective. Thus we have
to prove the injectivity of Φ1,F only.

Let a ∈ Ker Φ1,F . We have to prove a = 0. There are n ∈ IN and

U := ∑
t∈Tn

((αt ,xt)⊗ idK)V
f

t ∈Un ˇ̄Fn

with a = [U ]1, where (αt ,xt) ∈ F̌ for every t ∈ Tn. Since [U ′]1 = Φ1,F [U ]1 = 0, by
Proposition 7.1.3, there is an m ∈ IN such that

U ′0 :=

(
m

∏
i=1

A′n+i

)
U ′+

(
1E ′ −

m

∏
i=1

A′n+i

)

is homotopic in Un F̌n+m to a U ′1 ∈Un E ′n+m (⊂Un F̌n+m). Thus there is a continuous
path

U ′ : [0,1]−→Un F̌n+m , s 7−→U ′s .

Case 1 φ is injective

Put
W ′s :=U ′sσ

F
n+m(U

′∗
s U ′0) (∈Un F̌n+m)

for every s ∈ [0,1]. Then

σ
F
n+mW ′s = σ

F
n+mU ′0 = φF,n+m

((
m

∏
i=1

An+i

)
(σ F̄

n U)+

(
1E −

m

∏
i=1

An+i

))

for every s ∈ [0,1]. If we put

W ′s =: ∑
t∈Tn+m

((βs,t ,ys,t)⊗ idK)V
f ′

t ,

where (βs,t ,ys,t) ∈ F̌ for all s ∈ [0,1] and t ∈ Tn, then

∑
t∈Tn+m

((βs,t ,0)⊗ idK)V
f ′

t = σ
F
n+mW ′s =
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= φF,n+m

((
m

∏
i=1

An+i

)
∑

t∈Tn

((αt ,0)⊗ idK)V
f

t +

(
1E −

m

∏
i=1

An+i

))
and so by [2] Theorem 2.1.9 a), there is a (unique) family (γt)t∈Tn+m in E with βs,t = φγt for
every s ∈ [0,1] and t ∈ Tn+m. Since φ is injective, φn+m is also injective and φn+m( ˇ̄Fn+m)

may be identified with a unital C*-subalgebra of F̌n+m. Thus

W : [0,1]−→Un ˇ̄Fn+m , s 7−→ ∑
t∈Tn+m

((γt ,ys,t)⊗ idK)V
f

t

is a continuous path in Un ˇ̄Fn+m with φF,n+mWs =W ′s for every s ∈ [0,1]. It follows

φF,n+mW0 =W ′0 =U ′0 = φF.,n+m

((
m

∏
i=1

An+i

)
U +

(
1E −

m

∏
i=1

An+i

))
,

φF,n+mW1 =W ′1 =U ′1σ
F
n+m(U

′∗
1 U ′0) = σ

F
n+mU ′0 ∈ φF,n+m(Un E ′n+m) .

Since φ is injective, φF,n+m is also injective and we get(
m

∏
i=1

An+i

)
U +

(
1E −

m

∏
i=1

An+i

)
=W0 ,

(
m

∏
i=1

An+i

)
U +

(
1E −

m

∏
i=1

An+i

)
∈UnEn+m

ˇ̄Fn+m , g = [U ]1 = 0 .

Case 2 φ is surjective

We put

Ū0 :=

(
m

∏
i=1

An+i

)
U +

(
1E −

m

∏
i=1

An+i

)
(∈Un ˇ̄Fn+m) .

Since φ is surjective, φF,n+m is also surjective ([2] Theorem 2.1.9 a)). Since

φF,n+mŪ0 =U ′0

it follows from Lemma 9.1.2 b), that there is a continuous path

[0,1]−→Un ˇ̄Fn+m, s 7−→Us

with φF,n+mUs = U ′s for every s ∈ [0,1] and U0 = Ū0 . Since φF,n+mU1 = U ′1 ∈Un E ′n+m,
we have Ū0 ∈UnEn+m

ˇ̄Fn+m and g = [U ]1 = [Ū0]1 = 0.
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Case 3 φ is arbitrary

There are a unital commutative C*-algebra E ′′ and a unital C*-homomor-phisms φ ′ :
E −→ E ′′ and φ ′′ : E ′′ −→ E ′ such that φ ′ is surjective, φ ′′ is injective, and φ = φ ′′ ◦ φ ′

and the assertion follows from the first two cases and the considerations from the begin
of the section.

COROLLARY 9.1.4 Let E ′,E ′′ be unital commutative C*-algebras such that E = E ′×
E ′′ and

φ
′ : E −→ E ′ , (x′,x′′) 7−→ x′ ,

φ
′′ : E −→ E ′′ , (x′,x′′) 7−→ x′′ .

If F ′ is an E ′-C*-algebra and F ′′ is an E ′′-C*-algebra then the map (with obvious

notation)

Ki(Φ
′(F ′)×Φ

′′(F ′′))−→ K′i (F
′)×K′′i (F

′′), a 7−→ (Φ′i,F ′ ×Φ
′′
i,F ′′)(ϕia)

is a group isomorphism for every i ∈ {0,1}, where

ϕi : Ki(Φ
′(F ′)×Φ

′′(F ′′))−→ Ki(Φ
′(F ′))×Ki(Φ

′′(F ′′))

is the canonical group isomorphism (Product Theorem (Corollary 6.2.10 b), Proposition
7.3.3 b)).

COROLLARY 9.1.5 If f (s, t) ∈ IC for all s, t ∈ T and Cn ∈ ICn for all n ∈ INand if KIC

denotes the K-theory with respect to T , IC, f , and (Cn)n∈IN then Ki(E) = KIC
i (C (Ω, IC))

for all i ∈ {0,1}, where Ω denotes the spectrum of E.

PROPOSITION 9.1.6 If F is an E ′-C*-algebra then the map

ϕ : E×Φ(F)−→
ˇ︷ ︸︸ ︷

Φ(F) , (α,x) 7−→ (α,x−φα)

is an E-C*-isomorphism.

For (α,x),(β ,y) ∈ E×Φ(F) and γ ∈ E,

ϕ(γ(α,x)) = ϕ(γα,(φγ)x) = (γα,(φγ)x−φ(γα)) =
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= (γ,0)(α,x−φα) = (γ,0)ϕ(α,x) ,

ϕ(α,x)∗ = ϕ(α∗,x∗) = (α∗,x∗−φα
∗) = (ϕ(α,x))∗ ,

ϕ(α,x)ϕ(β ,y) = (α,x−φα)(β ,y−φβ ) =

= (αβ ,(φα)y−φ(αβ )+(φβ )x−φ(αβ )+ xy− (φβ )x− (φα)y+φ(αβ )) =

= (αβ ,xy−φ(αβ )) = ϕ(αβ ,xy) = ϕ((α,x)(β ,y)) ,

so ϕ is an E-C*-homomorphism. The other assertions are easy to see.

9.2 Changing f

In all Propositions and Corollaries of this section we use the notation and assumptions
of Example 5.0.4 and F denotes a C*-algebra.

LEMMA 9.2.1 For every n ∈ IN there is an εn > 0 such that for every m ∈ IN, m ≤ n,

and α ∈Un IC, |α − 1| < εn, there is a unique βα ∈Un IC, |βα − 1| < 1
n , with β m

α = α;

moreover the map α 7→ βα is continuous.

If β ,γ are distinct elements of Un IC and β m = γm then

|β − γ| ≥ |1− e
2πi
m |> 1

m
≥ 1

n

and the assertion follows from the continuity of the corresponding branch of the map
α 7→ m

√
α .

DEFINITION 9.2.2 For every finite group S we endow F (S, IC) with the metric

dS(g,h) := sup{ |g(s, t)−h(s, t)| | s, t ∈ S}

for all g,h ∈F (S, IC).

Remark. F (S, IC) endowed with the above metric is compact.
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DEFINITION 9.2.3 We put

Λ(T,E) := { λ : T −→Un E | λ (1) = 1E }

and

δλ : T ×T −→Un E , (s, t) 7−→ λ (s)λ (t)λ (st)∗

for every λ ∈ Λ(T,E).

LEMMA 9.2.4 Let S be a finite group and Ω a compact space.

a) { δλ | λ ∈ Λ(S, IC)} is an open set of F (S, IC).

b) For every ε ′ > 0 there is an ε > 0 such that for all g,h ∈F (S,C (Ω, IC)), if

‖g(s, t)−h(s, t)‖< ε

for all s, t ∈ S then there is a λ ∈ Λ(S, IC) such that h = gδλ and |λ (s)−1|< ε ′ for

all s ∈ S.

c) Let g∈F (S,C (Ω, IC)) and φ : [0,1]×Ω−→Ω a continuous map. We put for every

u ∈ [0,1],
φu := φ(u, ·) : Ω−→Ω ,

gu : S×S−→Un IC , (s, t) 7−→ g(s, t)◦φu .

Then gu ∈F (S,C (Ω, IC)) for every u ∈ [0,1] and there is a λ ∈ Λ(S, IC) with g1 =

g0δλ .

a) By [3] Theorem 2.3.2 (iii),

{S (g) | g ∈F (S, IC)}/≈S

is finite. { δλ | λ ∈ Λ(S, IC)} is obviously a closed subgroup of F (S, IC). By the above
and [2] Proposition 2.2.2 c), F (S, IC) is the union of a finite family of closed pairwise
disjoint sets homeomorphic to { δλ | λ ∈ Λ(S, IC)}, so { δλ | λ ∈ Λ(S, IC)} is open.

b) By a), there is an ε > 0 such that for all g′,h′ ∈F (S, IC) with dS(g′,h′)< ε there is
a λ ∈ Λ(S, IC) with h′ = g′δλ . We may assume that

(1+ ε)Card S−1 < εCard S ,
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where εCard S was defined in Lemma 9.2.1.

We put for every ω ∈Ω

gω : S×S−→Un IC , (s, t) 7−→ (g(s, t))(ω) ,

hω : S×S−→Un IC , (s, t) 7−→ (h(s, t))(ω) .

Let ω ∈Ω. By the above, there is a λω ∈ Λ(S, IC) with gω = hω δλω . Let s ∈ S and let
n ∈ IN be the least natural number with sn = 1S. By [2] Proposition 3.4.1 c),

λω(s)n =
n−1

∏
j=1

(gω(s j,s)∗hω(s j,s)) .

For every j ∈ INn−1,∥∥1E −g(s j,s)∗h(s j,s)
∥∥= ∥∥g(s j,s)−h(s j,s)

∥∥< ε ,∥∥∥∥∥n−1

∏
j=1

(g(s j,s)∗h(s j,s))

∥∥∥∥∥=
∥∥∥∥∥n−1

∏
j=1

(1E − (1E −g(s j,s)∗h(s j,s)))

∥∥∥∥∥< (1+ ε)n ,

∥∥∥∥∥1E −
n−1

∏
j=1

(g(s j,s)∗h(s j,s))

∥∥∥∥∥< (1+ ε)n−1−1 < εCard S .

By Lemma 9.2.1, there is a unique γ ∈Un IC with

γ
n =

n−1

∏
j=1

(g(s j,s)∗h(s j,s)) , |γ−1|< 1
Card S

.

For ω ∈Ω, since |1−λω(s)|< εCard S, we get λω(s) = γ(s). So if we put

λ (s) : Ω−→ IC , ω 7−→ γ(s)

we have λ ∈Λ(S, IC) and g = hδλ . By Lemma 9.2.1, we may choose ε in such a way that
the inequality |λ (s)−1|< ε ′ holds for all s ∈ S.

c) By b), there is a family (λi)i∈INn in Λ(S, IC) and

0 = u0 < u1 < · · ·< un−1 < un = 1

such that gui = gui−1δλi for every i ∈ INn. By induction g0δ

(
j

∏
i=1

λi

)
= gu j for every

j ∈ INn. Thus if we put λ :=
n
∏
i=1

λi then g0δλ = g1
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Remark. Let λ ∈ Λ(T,E) and f ′ = f δλ (∈F (T,E)). For every full E-C*-algebra F

and n ∈ IN we denote by F ′n the equivalent of Fn constructed with respect to f ′ instead of
f (Definition 5.0.2). By [2] Proposition 2.2.2 a1⇒ a2, there is for every n ∈ IN a unique
E-C*-isomorphism ϕF

n : Fn −→ F ′n such that for all m,n ∈ IN, m < n, the diagram

Fm
ϕF

m−−−−→ F ′my y
Fn −−−−→

ϕF
n

F ′n

is commutative, where the vertical arrows are the canonical inclusions. We put C′n :=
ϕE

n Cn for evrey n ∈ IN. (C′n)n∈IN satisfies the conditions of Axiom 5.0.3 with respect to
f ′, so we can construct a K-theory with respect to T , E, f ′, and (C′n)n∈IN, which we shall
denote by K f ′ . If m,n ∈ IN, m < n, then the diagrams

Fm
ρF

n,m−−−−→ Fn

ϕF
m

y yϕF
n

F ′m −−−−→
ρF ′

n,m

F ′n

Un Fm
τF

n,m−−−−→ Un Fn

ϕF
m

y yϕF
n

Un F ′m −−−−→
τF ′

n,m

Un F ′n

are commutative and so we get the isomorphisms

Pr F→ −→ Pr F ′→ , un F← −→ un F ′← .

By these considerations it can be followed that K and K f ′ coincide.

DEFINITION 9.2.5 Let Ω be the spectrum of E, Γ a closed set of Ω, and F a

C*-algebra. We denote by C (E; Γ,F) the E-C*-algebra obtained by endowing the

C*-algebra C (Γ,F) with the structure of an E-C*-algebra by putting

αx : Γ−→ F , ω 7−→ α(ω)x(ω)

for all (α,x)∈ E×C (Γ,F). If Ω′ is an open set of Ω then the ideal and E-C*-subalgebra{
x ∈ C (E;Ω,F) | x|(Ω\Ω

′) = 0
}

of C (E; Ω,F) will be denoted C0 (E; Ω′,F).
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By Tietze’s theorem

0−→ C0
(
E; Ω

′,F
) ϕ−→ C (E; Ω,F)

ψ−→ C
(
E; Ω\Ω

′,F
)
−→ 0

is an exact sequence in ME , where ϕ denotes the inclusion map and

ψ : C (E; Ω,F)−→ C
(
E; Ω\Ω

′,F
)
, x 7−→ x|(Ω\Ω

′) .

PROPOSITION 9.2.6 We denote by Ω the spectrum of E, by Γ a closed set of Ω, and by

ϑ : [0,1]×Ω−→Ω a continuous map such that

ω ∈Ω =⇒ ϑ(0,ω) = ω , ϑ(1,ω) ∈ Γ

and ϑ(s,ω) =ω for all s∈ [0,1] and ω ∈ Γ. We put E ′ :=C (Γ, IC), E ′′ := E, ϑs :=ϑ(s, ·)
for every s ∈ [0,1], and

φ : E −→ E ′ , x 7−→ x|Γ , φ
′ : E ′ −→ E ′′ = E , x′ 7−→ x′ ◦ϑ1 ,

f ′ : T ×T −→Un E ′ , (s, t) 7−→ φ f (s, t) = f (s, t)|Γ ,

f ′′ : T ×T −→Un E ′′ , (s, t) 7−→ φ
′ f ′(s, t) = f (s, t)◦ϑ1 .

a) There is a λ ∈ Λ(T,E) such that f ′′ = f δλ and the K-theories associated to f and

f ′′ coincide (as formulated in the above Remark). If Γ is a one-point set (i.e. Ω is

contractible) then f ′′(s, t) ∈Un IC (⊂Un E) for all s, t ∈ T .

b) If we put

ψ : C (E; Ω,F)−→ C (E; Γ,F) , x 7−→ x|Γ

then Ki(C0 (E; Ω\Γ,F)) = {0} and

Ki(ψ) : Ki(C (E;Ω,F))−→ Ki(C (E;Γ,F))

is a group isomorphism for every i ∈ {0,1}.

c) If Γ′ is a compact subspace of Ω\Γ then

Ki(C0
(
E; Ω\ (Γ∪Γ

′),F
)
)≈ Ki+1(C

(
E; Γ

′,F
)
)

for all i ∈ {0,1}.
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d) Let Γ̄ be a closed set of Ω, ϕ̄ : C0
(
E; Ω\ (Γ∪ Γ̄),F

)
−→ C (E; Ω,F) the inclusion

map,

ψ̄ : C0 (E; Ω,F)−→ C
(
E; Γ∪ Γ̄,F

)
, x 7−→ x|(Γ∪ Γ̄) ,

and δ0,δ1 the corresponding maps from the six-term sequence associated to the

exact sequence in ME

0−→ C0
(
E; Ω\ (Γ∪ Γ̄),F

) ϕ̄−→ C (E; Ω,F)
ψ̄−→ C

(
E; Γ∪ Γ̄,F

)
−→ 0

then the sequence

0−→ Ki(C (E; Ω,F))
Ki(ψ)−→ Ki(C

(
E; Γ∪ Γ̄,F

)
)

δi−→

δi−→ Ki+1(C0
(
E; Ω\ (Γ∪ Γ̄),F

)
)−→ 0

is exact for every i ∈ {0,1}.

a) By Lemma 9.2.4 c), for every m ∈ IN there is a λm ∈ Λ(Sm,E) with f ′′|(Sm×Sm) =

gmδλm. We put

λ : T −→Un E , t 7−→ λm(t) if t ∈ Sm .

Then

f ′′(s, t) = ∏
m∈IN

(gmδλ )(sm, tm) = ( f δλ )(s, t)

for all s, t ∈ T , i.e. f ′′ = f δλ .

b) Let n ∈ IN and X ∈

( ˇ︷ ︸︸ ︷
C0
(
E ′′; Ω\Γ,F

))
n

. Then X has the form

X = ∑
t∈Tn

((αt ,xt)⊗ idK)V
f ′′

t ,

where αt ∈ E ′′ and xt ∈ C0 (E ′′; Ω\Γ,F) for all t ∈ Tn. We put

Xs := ∑
t∈Tn

((αt ◦ϑs,xt ◦ϑs)⊗ idK)V
f ′′

t

for every s ∈ [0,1]. Then

[0,1]−→

( ˇ︷ ︸︸ ︷
C0
(
E ′′; Ω\Γ,F

))
n

, s 7−→ Xs
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is a continuous map, X0 = X ,

X1 = ∑
t∈T

((αt ◦ϑ1,0)⊗ idK)V
f ′′

t ,

and ( ˇ︷ ︸︸ ︷
C0
(
E ′′ : Ω\Γ,F

))
n

−→

( ˇ︷ ︸︸ ︷
C0
(
E ′′; Ω\Γ,F

))
n

, X 7−→ Xs

is an E ′′-C*-homomorphism for every s ∈ [0,1]. Thus K f ′′
i (C0 (E ′′; Ω\Γ,F)) = {0}. By

a), Ki(C0 (E; Ω\Γ,F)) = {0}.

If ϕ : C0 (E;Ω\Γ, f )−→ C (E;Ω,F) denotes the inclusion map then

0−→ C0 (E; Ω\Γ,F)
ϕ−→ C (E; Ω,F)

ψ−→ C (E; Γ,F)−→ 0

is an exact sequence in ME and the assertion follows from the six-term sequence
(Corollary 8.3.8 c)).

c) If we put

F1 := C0
(
E; Ω\ (Γ∪Γ

′),F
)
, F2 := C0 (E; Ω\Γ,F) , F3 := C

(
E; Γ

′,F
)
,

ϕ : F1 −→ F2 , x 7−→ x ,

ψ : F2 −→ F3 , x 7−→ x|Γ′

then
0−→ F1

ϕ−→ F2
ψ−→ F3 −→ 0

is an exact sequence in ME and the assertion follows from b) and from the six-term
sequence (Corollary 8.3.8 d)).

d) ϕ̄ factorizes through C0 (E; Ω\Γ, f ) so by b), Ki(ϕ̄) = 0 and the assertion follows
from the six-term sequence Corollary 8.3.8 b).

COROLLARY 9.2.7 We use the notation of Proposition 9.2.6. Let Ω̄ be a compact

space and ϑ̄ : Ω −→ Ω̄ a continuous map such that the induced maps Ω \ (Γ∪Γ′)→
Ω̄\ ϑ̄(Γ∪Γ′), Γ→ ϑ̄(Γ), and Γ′→ ϑ̄(Γ′) are homeomorphisms. If we put Ē :=C

(
Ω̄, IC

)
and

φ̄ : Ē −→ E , x 7−→ x◦ ϑ̄
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and take an f̄ ∈F (T, Ē) such that f (s, t) = φ̄ f̄ (s, t) for all s, t ∈ T and a corresponding

(C̄n)n∈IN ∈ ∏
n∈IN

Ēn then with the notation from the beginning of section 9.1 (with E and Ē

interchanged)

K̄i
(
C0
(
Ē; Ω̄\ ϑ̄(Γ∪Γ

′),F
))
≈ K̄i+1

(
C
(
Ē; ϑ̄(Γ′),F

))
,

for all i ∈ {0,1}, where K̄ denotes the K-theory associated to T , Ē, f̄ , and (C̄n)n∈IN. If in

addition Γ′ has the same property as Γ then

K̄i
(
C
(
Ē; ϑ̄(Γ),F

))
≈ K̄i

(
C
(
Ē; ϑ̄(Γ′),F

))
.

By our hypotheses,

Φ̄
(
C0
(
E; Ω\ (Γ∪Γ

′),F
))
≈ C0

(
Ē; Ω̄\ ϑ̄(Γ∪Γ

′),F
)
,

Φ̄(C (E; Γ,F))≈ C
(
Ē; ϑ̄(Γ),F

)
, Φ̄

(
C
(
E; Γ

′,F
))
≈ C

(
Ē; ϑ̄(Γ′),F

)
,

so by Proposition 9.2.6 b) and Theorem 9.1.3,

K̄i
(
C0
(
Ē; Ω̄\ ϑ̄(Γ∪Γ

′),F
))
≈ Ki

(
C0
(
E; Ω\ (Γ∪Γ

′),F
))
≈

≈ Ki+1
(
C
(
E; Γ

′,F
)
)≈ K̄i+1(C

(
Ē; ϑ̄(Γ′),F

))
.

If the supplementary hypothesis is fulfilled then by Proposition 9.2.6 c) and Theorem
9.1.3,

K̄i
(
C
(
Ē; ϑ̄(Γ),F

))
≈ Ki(C (E; Γ,F))≈

≈ Ki
(
C
(
E; Γ

′),F
))
≈ K̄i

(
C
(
Ē; ϑ̄(Γ′),F

))
.

COROLLARY 9.2.8 Assume E = C ( IT, IC).

a) If θ1, θ2, θ3, θ4 ∈ IR such that θ1 ≤ θ2 < θ1 +2π , θ3 ≤ θ4 < θ3 +2π then

Ki

(
C
(

E;
{

eiθ
∣∣∣ θ1 ≤ θ ≤ θ2

}
,F
))
≈

≈ Ki

(
C
(

E;
{

eiθ
∣∣∣ θ3 ≤ θ ≤ θ4

}
,F
))

for every i ∈ {0,1}.
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b) Let θ1,θ2 ∈ IR, θ1 ≤ θ2 < θ1 +2π and let Γ be a closed set of

IT\
{

eiθ
∣∣∣ θ2 < θ < θ1 +2π

}
such that eiθ1 ∈ Γ and eiθ2 6∈ Γ if eiθ1 6= eiθ2 . Then

Ki(C0 (E; IT\Γ,F))≈ Ki+1(C (E; Γ,F))

for every i ∈ {0,1}. Moreover

Ki(C0 (E; IT\Γ,F))≈

 Ki+1(C (E; {1},F))Γ if F is finite

∑
n∈IN

Ki+1(C (E; {1},F)) if F is infinite .

c) If Γ1, Γ2 are closed sets of IT, not equal to IT and such that their cardinal numbers

are equal if they are finite then

Ki(C (E; Γ1,F))≈ Ki(C (E; Γ2,F))

for all i ∈ {0,1}.

a) We may assume θ1 ≤ θ3 < θ1 +2π . Put Ω′ := [θ1,sup(θ2,θ3)], E ′ := C (Ω′, IC),

ϑ : Ω
′ −→ IT , α 7−→ eiα ,

φ : E −→ E ′ , x 7−→ x◦ϑ .

Since it is possible to find an f ′ ∈ F (T,E ′) and a (C′n)n∈IN ∈ ∏
n∈IN

E ′n with the desired

properties, we get

Ki

(
C
(

E;
{

eiθ
∣∣∣ θ1 ≤ θ ≤ θ2

}
,F
))
≈ Ki

(
C
(

E; {eiθ3},F
))

.

by Corollary 9.2.7. Thus

Ki

(
C
(

E;
{

eiθ
∣∣∣ θ3 ≤ θ ≤ θ4

}
,F
))
≈ Ki

(
C
(

E; {eiθ3},F
))

,

Ki

(
C
(

E;
{

eiθ
∣∣∣ θ1 ≤ θ ≤ θ2

}
,F
))
≈

≈ Ki

(
C
(

E;
{

eiθ
∣∣∣ θ3 ≤ θ ≤ θ4

}
,F
))

.

b) If we put Ω′ := [θ1,θ1 +2π], E ′ := C (Ω′, IC),

ϑ : Ω
′ −→ IT , α 7−→ eiα ,
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φ : E −→ E ′ , x 7−→ x◦ϑ ,

then the first assertion follows from Corollary 9.2.7. If Γ is finite then the last assertion
follows now from a) (and Corollary 6.2.10 b) and Proposition 7.3.1 b)).

Assume now Γ infinite. Then Ω0 := IT \ Γ is the union of a countable set of open
intervals. Let Ξ be the set of finite such intervals ordered by inclusion and for every
Θ ∈ Ξ let ΩΘ be the union of the intervals of Θ and ΓΘ := IT\ΩΘ. By the above,

Ki(C0 (E; IT\ΓΘ,F))≈ Ki+1(C (E; {1},F))Θ

for every Θ ∈ Ξ. We get an inductive system of E-modules with C0 (E; IT\Γ,F) as
inductive limit. By Theorem 6.2.12 and Theorem 7.3.6, Ki(C0 (E; IT\Γ,F)) is the
inductive limit of Ki(C0 (E; IT\ΓΘ,F)) for Θ running through Ξ, which proves the
assertion.

c) follows from b).

Remark. Let δ0 and δ1 be the group homomorphisms from the six-term sequence
associated to the exact sequence in ME

0−→ C0 (E; IT\Γ,F)−→ C (E; IT,F)−→ C (E; Γ,F)−→ 0 .

Then δ0 and δ1 do not coincide with the group isomorphism

Ki(C0 (E; IT\Γ,F))≈ Ki+1(C (E; Γ,F))

from Corollary 9.2.8 b).

COROLLARY 9.2.9 If Ω is a compact space such that E = C (Ω× IT, IC) then

Ki(C0 (E; Ω× ( IT\{1}),F))≈ Ki+1(C (E; Ω×{1},F))

for every i ∈ {0,1}.

COROLLARY 9.2.10 If the spectrum of E is IBn for some n ∈ IN then

Ki(C0 (E; IBn \{0},F)) = {0} and

Ki(C0 (E; { α ∈ IRn | 0 < ‖α‖< 1} ,F))≈ Ki+1(C (E; SS n−1,F))

for every i ∈ {0,1}.
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COROLLARY 9.2.11 Let (k j) j∈J be a finite family in IN, Ω′ the topological sum of the

family of balls (IBk j) j∈J , and Ω the compact space obtained from Ω′ by identifying the

centers of theses balls. If ω denotes the point of Ω obtained by this identification and S

denotes the union of (SS k j−1) j∈J in Ω and if E = C (Ω, IC) then

Ki (C0 (E; Ω\{ω},F)) = {0} ,

Ki(C0 (E; (Ω\ ({ω}∪S),F))≈ Ki+1(C (E; S,F))

for every i ∈ {0,1}.

If we denote by ϑ : Ω′ −→ Ω the quotient map, by Γ the subset of Ω′ formed by
the centers of the balls (IBk j) j∈J , and by Γ′ the union of (SS k j−1) j∈J (Γ′ ⊂ Ω′) then the
assertions follow from Proposition 9.2.6 b), c) and Corollary 9.2.7.

LEMMA 9.2.12 Let S be a finite group, g ∈F (S,E), and Ω the spectrum of E.

a) If there is an ω0 ∈ Ω and a family (θ(s, t))s,t∈S of selfadjoint elements of E such

that

θ(r,s)+θ(rs, t) = θ(r,st)+θ(s, t) , g(s, t) = eiθ(s,t)(g(s, t)(ω0))

for all r,s, t ∈ S then there is a λ ∈ Λ(S, IC) with (gδλ )(s, t) = g(s, t)(ω0) for all

s, t ∈ S.

b) If Ω is totally disconnected then there is a λ ∈ Λ(S,E) such that

((gδλ )(s, t))(Ω)

is finite for all s, t ∈ S.

a) For every u ∈ [0,1] put

gu : S×S−→Un E , (s, t) 7−→ eiuθ(s,t)(g(s, t)(ω0)) .

Then

[0,1]−→F (S,E), u 7−→ gu
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is a continuous map with g1 = g and g0(s, t) = g(s, t)(ω0) for all s, t ∈ S. By Lemma 9.2.4
a),b), there are

0 = u0 < u1 < · · ·< uk−1 < uk = 1

and a family (λ j) j∈INk in Λ(S, IC) such that gu j−1 = gu j δλ j for every j ∈ INk. We prove by
induction that

gul−1 = g
k

∏
j=l

δλ j

for all l ∈ INk. This is obvious for l = k. Assume the identity holds for l ∈ INk, l > 1.
Then

g
k

∏
j=l−1

δλ j =

(
g

k

∏
j=l

δλ j

)
δλl−1 = gul−1δλl−1 = gul−2 ,

which finishes the proof by induction. If we put

λ :=
k

∏
j=1

λ j ∈ Λ(S, IC)

then by the above

gδλ = g
k

∏
j=1

δλ j = g0 .

b) Let ω0 ∈ Ω. Since Ω is totally disconnected and S is finite, by continuity, there is a
clopen neighborhood Ω0 of ω0 and a family (θ(s, t))s,t∈S in ReC (Ω0, IC) such that

θ(r,s)+θ(rs, t) = θ(r,st)+θ(s, t) , g(s, t)|Ω0 = eiθ(s,t)(g(s, t)(ω0))

for all r,s, t ∈ S. By a), there is a λ ∈ Λ(S, IC) with

((g|Ω0)δλ )(s, t) = g(s, t)(ω0)

for all s, t ∈ S.

The assertion follows now from the fact that there is a finite partition (Ω j) j∈J of Ω with
clopen sets such that Ω j possesses the property of the above Ω0 for every j ∈ J.

PROPOSITION 9.2.13 If the spectrum of E is totally disconnected then there is a λ ∈
Λ(T,E) such that (( f δλ )(s, t))(Ω) is finite for all s, t ∈ T .
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9.2 Changing f

By Lemma 9.2.12 b), for every m ∈ IN there is a λm ∈ Λ(Sm,E) such that
((gmδλm)(s, t))(Ω) is finite for all s, t ∈ Sm. If we put

λ : T −→Un E , t 7−→ λm(t) if t ∈ Sm

then λ has the desired properties.

PROPOSITION 9.2.14 Assume that T , f , and (Cn)n∈IN satisfy the conditions of

Example 5.0.4 and of its Remark 1 and that the spectrum Ω of E is simply connected.

a) There is a λ ∈ Λ(T,E) such that ( f δλ )(s, t) ∈ IC for all s, t ∈ T .

b) If K1 (C (Ω, IC)) = {0} for the classical K1 then K1 (E) = {0} for the present theory.

a) follows from Lemma 9.2.12 a).

b) follows from a), Remark 1 of Example 5.0.4, and Proposition 7.1.10.
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