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Preface 

Different skew models such as the lognormal and the Pareto have been 

proposed as suitable descriptions of the income distribution, but such specific 

distributions are usually applied in empirical investigations. For general studies 

more wide-ranging tools have been considered. The central and most commonly 

applied theory is connected to the Lorenz curve. Without any assumptions 

concerning specific distributions, this theory enables analyses of temporal and 

regional variations in the income inequalities. Particularly, it is a valuable tool for 

studies of the effect of taxes and transfers to the redistribution of income. 

Taxation and transferring may have similar effects, but some marked differences 

with respect to their applications can be identified and therefore, both will 

usually be given individual presentations. 

In this study I have collected the central parts of my contributions to the 

theory of income distributions and furthermore, I have tried to locate my results 

within the framework of the general literature. 
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1.1  Historical Background 

It is a well-known fact that the income distributions are commonly unimodal 

and skew with a heavy right tail. Therefore, different skew models such as the 

lognormal and the Pareto have been proposed as suitable descriptions of the 

income distribution, but they are usually applied in specific empirical situations. 

For general studies, more wide-ranging tools have been considered. The most 

commonly used theory is based on the Lorenz curve. Lorenz (1905) developed 

it in order to analyse the distribution of income and wealth within populations. 

He described the Lorenz curve in the following way: 

"Plot along one axis accumulated per cents of the population from 

poorest to richest, and along the other, wealth held by these per cents of 

the population". 

Consequently, the Lorenz curve )( pL  is defined as a function of the 

proportion p of the population. It is convex and satisfies the condition ppL )(  

because the income share of the poor is less than their proportion of the 

population. A sketch of a Lorenz curve is given in Figure 1.1.1. 

The theoretical Lorenz curve )( pLX  for the income distribution )(xFX  of a 

non-negative variable X can be described in the following way: Let )(xf X  be 

the corresponding frequency distribution, 

 




0

)( dxxfx XX  （1.1.1） 

be the mean of X and let px  be the p quantile, that is pxF pX )( . Then  
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 

px

X

X

X dxxxfpL

0

)(
1

)(


, (1.1.2) 

is the Lorenz curve. The Lorenz curve is not defined if the mean is zero or 

infinite.  

 

Figure 1.1.1  A sketch of a Lorenz curve )( pLX . 

Consider a transformed variable )(XgY  , where )(g  is positive and 

monotone increasing. Define the inverse transformation )(YX  . Then 

)()())()(()()( xFxXPxgXgPyYPyF XY  . 

For the transformed variable Y the p quantile is pyF pY )( , that is 

)( pp xgy  .  

Now  

 dy

d
xf

dy

dx
xf

dy

dx

dx

xdF

dy

ydF
yf XX

XY
Y


)()(

)()(
)(  . (1.1.3) 
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Hence  

 




00

)()()( dxxfxgdyyyf XYY  (1.1.4) 

and  

 

px

X

Y

Y dxxfxgpL

0

)()(
1

)(


. (1.1.5) 

If the transformation is linear xxg )( , then XY  , XY   , 

 )()(
1

)(

0

pLdxxfxpL X

x

X

X

Y

p

 
 (1.1.6) 

and consequently, the Lorenz curve is invariant under linear transformations.  

A simple example of this property is that the Lorenz curve of the income 

distribution is independent of the currency used. 

Consequently, the Lorenz curve satisfies the general rules: 

To every distribution )( xF  corresponds a unique Lorenz curve, ( )
X

L p . 

The contrary does not hold because every Lorenz curve )( pLX  is a 

common curve for a whole class of distributions )( xF   where   is an 

arbitrary positive constant.  

A Lorenz curve always starts at  0,0  and ends at  1,1 . The higher Lorenz 

curve the lesser is the inequality of the income distribution. The diagonal 

ppL )(  is commonly interpreted as the Lorenz curve for complete equality 

between the income receivers, but according to Wang et al. (2011), ppL )(  is 

strictly speaking not a Lorenz curve associated with complete inequality. They 
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discuss the possibility how to identify this Lorenz curve with the situation that 

all individuals receive the same income. Mathematically this result can be 

obtained as a limiting curve when the inequality of the income distribution 

converges towards zero. Increasing inequality lowers the Lorenz curve and 

theoretically, it can converge towards the lower right corner of the square. 

Consider two variables X and Y, their distributions )(xFX  and )(yFy , and 

their Lorenz curves )( pLX  and )( pLY . If )()( pLpL YX   for all p, then 

measured by the Lorenz curves, the distribution )x(F
X  has lower inequality 

than the distribution )(yFy  and )(xFX  is said to Lorenz dominate )(yFy . We 

denote this relation )()( yFxF Y
L

X  . An example of Lorenz dominance is given 

in Figure 1.1.2. This is the common definition of the Lorenz dominance 

although that some define the dominance in the opposite way. 

 

Figure 1.1.2  Lorenz curves with Lorenz ordering, that is (p)L(p)L Y
L

X  . 
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Income inequalities can be of different type and the corresponding Lorenz 

curves may intersect and for these no Lorenz ordering can be identified (c.f. 

Figure 1.1.3). The Lorenz curve )(2 pL  corresponds to a population where the 

poor are relatively not so poor and the rich are relatively rich. On the other hand 

the Lorenz curve )(1 pL  corresponds to a population with very poor among the 

poor and the rich are not so rich. 

For intersecting Lorenz curves alternative inequality measures have to be 

defined. The most frequently used is the Gini coefficient, G (Gini, 1914). Using 

the Lorenz curves, this coefficient is the ratio between the area between the 

diagonal and the Lorenz curve and the whole area under the diagonal. The 

formula is 

 

1

0

)(21 dppLG . (1.1.7) 

This definition yields Gini coefficients satisfying the inequalities 10 G . 

The higher G value the stronger inequality. If YX GG  , then the distribution 

)(xFX , measured by the Gini coefficient, has lower inequality than the 

distribution )(yFy  and we say that )(xFX  Gini dominates )(yFy . We denote 

this relation )()( yFxF Y
G

X  . 

Yitzhaki (1983) proposed the generalized Gini coefficient 

 


1

0

2 )()1()1(1)( dppLpG  , (1.1.8) 

where 1 . Different s   are used in order to identify different inequality 

properties. For low s   greater weights are associated with the rich and for high 
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s   greater weights are associated with the poor. Using the mean income (  ) 

and the Gini coefficient ( G ), Sen (1973) proposed a welfare index  

  GW  1 . (1.1.9) 

 

Figure 1.1.3  Two intersecting Lorenz curves. Using the Gini coefficient presented  

in the text, )(1 pL  has less inequality ( 3333.01 G ) than )(2 pL  ( 3600.02 G ). The 

Pietra coefficients, presented below, are 2500.01 P  and 2940.02 P . 

Alternative inequality measures have been defined and such measures are 

discussed later in section 1.3. 

1.2  Income Distributions 

According to Aichison and Brown (1954) general description of an income 

distribution may be defined as a rule which gives for each value of income x the 

proportion )(xF  of persons in a given population who have an income not 

greater than x. Such a description is a useful analytical tool if it requires that 

)(xF  has to be given a precise mathematical expression involving known, or 

more frequently unknown, parameters. It is interesting to recall that Pareto 

(1897), when he first presented his law, emphasised its empirical basis, but on 
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the other hand the process of reasoning by Gibrat (1931) started from theory to 

observations. 

Aichison and Brown (1954) gave four criteria on which the success of a 

particular description may be assessed. 

 How closely the description approximate to the observed distribution of 

incomes when specific values are assigned to the parameters? These 

values will usually be estimated from the data. 

 To what extent may the statistical description be shown to rest on 

assumptions which are consistent with our knowledge of the way in which 

incomes are generated? 

 What facilities does the description provide in the statistical analysis of 

the data? 

 What economic meaning or significance can be attached to the parameters 

of the description? 

Furthermore, Aichison and Brown gave a thorough presentation of studies of 

income distributions presented during the first half of the 20
th
 century. They 

stated that it is well known that income distributions almost invariably possess a 

single mode and are positively skewed. Many statistical descriptions satisfying 

these rather general conditions have been proposed in the past as applicable to 

the distribution of incomes, among which one may note the frequency curves of 

Pareto (1897), Kapteyn (1903), Gibrat (1931) and Champernowne (1953). 

Already Quensel (1944) stated that the lognormal curve agrees fairly well 

with the actual distribution of the lower incomes, although the Pareto curve 

often provides a more adequate description of the higher incomes. 
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Champernowne (1953) described an ingenious model which under realistic 

assumptions generates exactly or approximately a distribution of incomes 

obeying Pareto ś law. Champernowne ś model provides a basis for the compari-

son of processes of generating the Pareto and the lognormal descriptions of 

income distributions. Before Champernowne ś article Rhodes (1944) and 

Castellani (1950) presented attempts to derive Pareto ś distribution. 

Furthermore, Aichison and Brown (1954) noted that the law of proportionate 

effect, postulated by models predicting lognormality, is less appropriate when 

we are considering a heterogeneous group of income receivers than if the 

population is divided in sectors, within each the postulate applies. Under the 

assumptions which are necessary for the application of the central limit theorem, 

the multiplicative form of the central limit theorem leads us to expect that the 

distribution of incomes will eventually be described by a lognormal curve. If the 

population is divided into a large number of sectors and that in each sector the 

basic postulate of proportionate effect may be assumed to apply, means that a 

lognormal description of incomes will be valid in each sector, though the 

parameters of the description may take on different numerical values in each 

sector. 

Finally, Aichison and Brown (1954) stressed that it is useless to posit a 

statistical description of income distribution unless it is possible with the help of 

this description to derive analytical tools for any investigation that is likely to be 

required. To take an extreme example, there would be little point in giving 

)(xF  an explicit mathematical form involving unknown parameters if no 

method of estimating these parameters from data were available. It is, however, 

comforting in statistical work to be sure that one is not wasting any of the 

information available and this is always possible with the lognormal description. 
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An example of a skewed lognormal distribution can be seen in Figure 1.2.1. 

Note that the income receivers in this example are a homogeneous group from 

the upper part of the hierarchy (c.f. Aichison and Brown, 1954). 

 

Figure 1.2.1  Distribution of the income among 4103 industrial managers  

compared to a lognormal distribution (Cramér, 1949). 

McDonald and Ransom (1979) compared alternative income distribution 

models and applied them on US family income data. The interesting models 

were the lognormal, the gamma, the beta and the Sing-Maddala functions. They 

applied the models on family income for 1960 and 1969 through 1975 and 

compared the estimation methods: the method of scoring, the Pearson minimum 

chi-squared method and the least squares estimation. The estimation of the 

mean income and the Gini coefficient were directly obtained by substituting 

estimates of the parameters characterizing the associated distribution functions 

into the appropriate theoretical expressions of the coefficients. They noted that 

even though they observed situations in which parameter estimates change 

significantly from one time period to another, the associated population 

characteristics such as the mean and the Gini coefficients are much more stable. 

However, the estimated Gini coefficients associated with the scoring and the 

minimum chi-squared estimates of the lognormal density are much larger than 

for any other case considered. A general observation was that the scoring and 
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the minimum chi-squared results were very similar for the three parameter 

functions, with greater differences for the gamma, and still greater for the 

lognormal. 

Summing up, McDonald and Ransom concluded that the gamma provided a 

better fit than the lognormal, regardless of the estimation technique used. The 

three parameter functions (beta and Singh-Maddala) provided a better fit to the 

data than did the gamma density function. This finding is obviously due to the 

number of distribution parameters. 

Over time has come the realization that only the upper tail of the distribution 

is Pareto in form. Proceeding from the observation that the distribution has a 

Pareto tail for the top 15-20% of employees. Lydall (1968) advances a model of 

hierarchal earnings based on the notation that large organisations are organised 

on hierarchical principle. 

Harrison (1981) noted that a number of observed earnings distributions were 

well described by the Pareto distribution 

 









 11

10
)(

yy

y
yF

 , (1.2.1) 

where 0  and LYYy / , LY  being the minimum income. For 1 , the 

mean is 
1

)(






YE . Furthermore, the Lorenz curve is   

 1

11)(


 ppL  and 

the Gini coefficient is 
12

1





G . It may perhaps be convenient to remark here 

that for commonly occurring values of the parameter   a second moment of the 

Pareto distribution does not exist unless 2 . Furthermore, Harrison stressed 

that equally compelling reasons supporting the use of disaggregated data can be 

found in the case of the lognormal function. 
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Dagum (1977, 1980, 1987) has paid continuous attention to alternative 

income distributions. 

A common technique for estimating the Pareto constant,  , is to linearize the 

survival function by taking logarithms, and apply ordinary least squares. The 

survival function is  













LY

Y
yFyS )(1)( . 

After taking natural logarithms one obtains the linear model 

  )Yln(C)Yln()Yln()y(Sln
L

  . 

This model indicates a linear, decreasing association between  ln ( )S y  and 

)ln(Y . A regression analysis gives an estimate of   and the coefficient of 

determination, 
2R , measures the linearity in the model and the goodness of fit 

of the Pareto model. 

We apply this analysis on annual taxable incomes in Finland for 2009 

(http://pxweb2.stat.fi/Database/StatFin/tul/tvt/2009/2009_en.asp). 

The data are presented in a grouped table (Table 1.2.1). We assume that the 

Pareto model may start from ca. 25000Y €. For values equal to or greater 

than that we obtain the estimate 637.2ˆ   and in addition, the coefficient of 

determination is 99241.02 R . For the income distribution for incomes greater 

than 25000 the Gini coefficient is 234.0
12

1






G . 

 

 

http://pxweb2.stat.fi/Database/StatFin/tul/tvt/2009/2009_en.asp
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Table 1.2.1  Taxable income receivers in Finland 2009. 

Classes of annual income (€) Number of income recipients 

- 1000 182281 

1000 - 2000 96836 

2000 - 3000 80056 

3000 - 4000 65800 

4000 - 5000 59595 

5000 - 6000 62171 

6000 - 7000 107558 

7000 - 8000 146526 

8000 - 9000 114602 

9000 - 10000 121555 

10000 - 12500 319042 

12500 - 15000 329083 

15000 - 17500 259979 

17500 - 20000 243284 

20000 - 25000 481753 

25000 - 30000 487376 

30000 - 35000 385672 

35000 - 40000 266075 

40000 - 50000 307810 

50000 - 60000 152714 

60000 - 80000 120327 

80000 - 88488 

All 4478583 
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In Figure 1.2.2 we sketch the result. 

 

Figure 1.2.2  Graphical sketch of the distribution of taxable income in Finland  

(2009) and a Pareto model for annual incomes greater than 25000Y €. 

1.3  Lorenz Curves and Concentration of Incomes 

A central topic in the analyses of income distributions is the concept of 

concentration of incomes, which is defined in the literature (Lorenz, 1905) in 

such a way as to be free of any particular hypothesis concerning the genesis of 

the description of the income distribution. 

In Section 1.1 we introduced the Lorenz curve )( pL  defined by 



px

dxxfxpL

0

)(
1

)(


, where 




0

)( dxxfx XX  is the mean and pxF p )( . 

Lorenz curves were presented in the Figures 1.1.1, 1.1.2 and 1.1.3. 

The Lorenz curve has the following general properties: 

i. )( pL  is monotone increasing. 

ii. ppL )( . 
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iii. )( pL  is convex. 

iv. 0)0( L  and 1)1( L . 

The Lorenz curve )( pL  is convex because the income share of the poor is 

less than their proportion of the population. The higher Lorenz curve the lesser 

inequality in the income distribution (c.f. Section 1.1).  

The Lorenz curve for a probability distribution is a continuous function. 

However, Lorenz curves representing discontinuous functions can be 

constructed as the limit of Lorenz curves of probability distributions, the line of 

perfect inequality being an example. 

If the Lorenz curve is differentiable the derivatives have the following 

properties. Let 

px

X

X

X dxxfxpL

0

)(
1

)(


, pxF pX )(  and the density function 

)(xf X . When we differentiate the equation pxF pX )(  we obtain 

1
)()(


dp

dx

dx

xdF

dp

xdF p

p

pXpX
,  

1)( 
dp

dx
xf

p

pX  

and  

)(

1

pX

p

xfdp

dx
 . 

The derivation of 

px

X

X

X dxxfxpL

0

)(
1

)(


 yields 

http://en.wikipedia.org/wiki/Continuous_function
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X

pp

pXp

X

p

p

x

X

X

X
x

dp

dx
xfx

dp

dx

dx

dxxfxd

dp

pdL

p





)(

1
)(

1)( 0
 

and consequently,  

 
X

pX
x

dp

pdL




)(
 (1.3.1) 

If the Lorenz curve is differentiable twice, then the second derivative is  

)(

111)(
2

2

pXX

p

X

X

xfdp

dx

dp

pLd


 . 

Hence, 

  pXX xfdp

pLd



1)(
2

2

  (1.3.2) 

The difference between the diagonal and the Lorenz curve 

)( pLpD X  

X

p

X

x
pL

dp

dD


 1)(1  

0
)(

11
)(

2

2


xfdp

dx
pL

dp

Dd

XX

p

X

X


. 

The maximum of D implies 01 
X

px


, that is px . 

For Xpx  , 1)( 
X

X
X pL




 and at the point )( XXFp    the tangent is 

parallel to the line of perfect equality. This is also the point at which the vertical 
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distance between the Lorenz curve and the egalitarian line attains its maximum 

( )
X

P p L p
 

  . This maximum is defined as the Pietra index (Lee, 1999). 

According to this definition 0 1P  . The lower bound is obtained when there 

is total income-equality that is the Lorenz curve coincides with the diagonal. 

The upper bound can be obtained when the Lorenz curve converges towards the 

lower right corner. The Pietra index can be interpreted as income of the rich that 

should be redistributed to the poor in order to obtain total income equality. 

Therefore, the index is sometimes named the Robin Hood index. Lee (1999) 

used the Lorenz curve and the summary measures based on it for diagnostic 

tests medical studies. He associated the Gini and the Pietra indices with the 

receiver operating characteristic curve (ROC). He also gave in his reference list 

additional papers where these summary statistics were applied.  

An alternative definition has also been given. The Pietra index can be defined 

as twice the area of the largest triangle inscribed in the area between the Lorenz 

curve and the diagonal line (Lee, 1999). In Figure 1.3.1 one observes that the 

triangle obtains its maximum when the corner lies on the Lorenz curve where 

the tangent is parallel to the diagonal. The height of the triangle is 
2

P
h   and 

the base is the diagonal 2b . The double of the area is 

P
Ph


22

2
2

2

2
2area2 . 

Compared to the Gini coefficient we obtain that PG   (see, Lee, 1999).  
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Figure 1.3.1  The Lorenz curve and the geometric interpretations of the Pietra index. 

The definition yields Pietra coefficients satisfying the inequality 10  P . If 

YX PP  , then the distribution )(xFX  measured by the Pietra index has lower 

inequality than the distribution )(yFy  and we say that )(xFX  Pietra dominates 

)(yFy . We denote this relation )()( yFxF Y
P

X  . For the Lorenz curves in Figure 

1.1.3, 0.25001 P  and 0.29402 P . According to the Pietra index, )(1 pL  is 

less unequal than )(2 pL . 

In general, the Pietra and the Gini orderings are not identical. The following 

simple example supports this statement. Consider the situation described in 

Figure 1.3.2. There are two polygonal Lorenz curves, OABC ( )(1 pL ) and ODC 

( )(2 pL ). 
1
For )(1 pL  we obtain 11 GP   and for )(2 pL  we obtain 22 GP   

because ODC is a triangle yielding identical indices. Furthermore if the point D 

                                                           
1 The Lorenz curves in this example are not continuously differentiable, but slight modifications yield 

differentiable Lorenz curves. One has only to modify the edges to mini curves. If these modifications are 
minute, the inequalities given above still hold. 
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is close to the line AB, we observe that 21 GG   and 21 PP  . Combining these 

inequalities we obtain 1221 GGPP  . Consequently, )(1 pL  Pietra 

dominates )(2 pL , but )(2 pL  Gini dominates )(1 pL . 

 

Figure 1.3.2  Comparisons between Gini and Pietra indices. For the Lorenz curve 

)(1 pL  the Pietra index is 20.0P  and the Gini coefficient is 30.0G  and for Lorenz 

curve )(2 pL  the Pietra index is 25.0P  and the Gini coefficient is 25.0P .  

Above we obtained the inequality 10  P . The limits in the inequalities can 

be obtained and this can be explained by the following example and Figure 

1.3.3. 

Consider the simplified RT model defined in (1.4.5) 

ppL )(  1 . 

Examples of these Lorenz curves are sketched in Figure 1.3.3. The Gini 

coefficient is 
1

1








G . When 1  then 0G  and when   then 

1G . The Pietra index is 
11

1

11 



























P . We select a sequence of   
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values 
n

1
1 , for ...,2,1n . The P values are 















































nnn

nn
P

1
1

1

1
1

1

1
1 .  

When n , both terms converge towards 1e  and 0P . According to 

the definition of the P index  








ppP 



















 11

1

11
 for all 1p  .  

For increasing   values the supremum of pp   is one. This must also be 

the supremum of 
11

1

11 



























P . Consequently, the interval 10  P  

cannot be shortened.  

 

Figure 1.3.3  Sketches of extreme Lorenz curves with corresponding P indices.  

For the Lorenz curve 25.1k  the Pietra index is 0.0819 and for the Lorenz  

curve 10k  the index is 0.6966. 
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We can prove (
1

lim
p

 denotes limit from the left). 

Theorem 1.3.1. If X exists, then 
1

lim ( )(1 ) 0
p

L p p


   . 

Proof. Consider the integral 


x

X dttft )( . If X  exists, then XX dttft 


0

)(  

and for every 0  there exists an x  such that 




x

X dttft )(  if xx  . 

Choose p so that xxp
 , then 

 )1()()( pxdttfxdttft p

x

Xp

x

X

pp

 


 . (1.3.3) 

As a consequence of (1.3.3), 

0)1(lim
1

)1(lim)1)((lim
1

11





pxp
x

ppL
p

p

XX

p

p
X

p  . 

Consider an one-parametric class of cumulative distribution functions 

),( xF , defined on the positive x-axis. If we assume that )(),( xFxF   , i.e. 

it depends only on the product x , then the following theorem holds: 

Theorem 1.3.2. Let ),( xF  be a one-parametric class of distributions with 

the properties: 

i. )(),( xFxF   . 

ii. )( xF   is defined on the positive x-axis. 

iii. )( xF   and its derivative are continuous. 

iv. )(XEX  exists. 
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Let XT  , then  

 


p

p

t
x )(  (1.3.3) 

and  

 


c
X )( , (1.3.5) 

where pt  and c are independent of  . 

Proof. Let   be an arbitrary, positive parameter. Then the quantile )(px  is 

defined by the equation pxF p )( . If we define pt by the equation 

ptF p )(  then pt  does not depend on   and pp tx )(
 
and (1.3.3) is 

proved. The formula (1.3.5) and the statement that 

)(

0

)(
)(

1
)(






px

xdFxpL  is 

independent of   is proved by using the substitution xt   in the integrals 






0

)()( xdFxXE   and 

)(

0

)(
)(

1
)(






px

xdFxpL . 

Furthermore, we can prove: 

Theorem 1.3.3. Consider a function )( pL  defined on the interval [0, 1] with 

the properties: 

i. )( pL  is monotone increasing and convex. 

ii. 0)0( L  and 1)1( L . 

iii. )( pL  is differentiable twice. 



24         Mathematical Analysis of Distribution and Redistribution of Income 
 

http://www.sciencepublishinggroup.com 

iv. 0)1)((lim
1




ppL
p

. 

then )( pL  is a Lorenz curve of a distribution with finite mean.  

Proof. If we denote the unknown distribution )(xF  and its derivative )(xf , 

then necessarily 


px
pL  )( . The derivative )( pL  is a monotone-increasing 

function. If its inverse is denoted )( pM , we get the necessary relation 

)()(


p

p

x
MpxF  . 

If 



1

 , then )()( xMxF  . Now we shall prove the sufficiency, that is, 

that )( xM   is a distribution, whose mean is 



1

  and whose Lorenz curve is 

)( pL . We denote )()( xFxM   then )()()( xMxFxf   . After 

observing that the property (iv) indicates that )( pL  is integrable from 0 to 1, 

we introduce the variable transformation 

)( xMy   

dxxMdy )(   

)(
1

yLx 
  

We obtain 




1
)(lim

1
)(

1
lim)(lim

0
1

0
1

0

  
dyyLdyyLdxxMx

p

p

p

p

t

t
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The given function )( pL  has a monotone-increasing inverse function, 

)( xM   giving a corresponding distribution function )()( xMxF   whose 

mean is  .  

Using the same transformation we obtain that the Lorenz curve )(
~

pL  of 

)()( xMxF   is 

dvvLdvvLdxxMxpL

ppx p

 

000

)()()()(
~

  

and the theorem is proved. 

These results have been collected in the following theorem (Fellman, 1976, 

1980). 

Theorem 1.3.4. Consider a given function )p(L  with the properties: 

i. )( pL  is monotone increasing and convex to the p-axis. 

ii. 0)0( L  and 1)1( L . 

iii. )( pL  is differentiable. 

iv. 0)1)((lim
1




ppL
p

. 

Then )( pL  is the Lorenz curve of a whole class of distribution functions 

)( xF  , where   is an arbitrary positive constant and the function )(F  is the 

inverse function to )( pL . 

In Fellman (1976) the result was presented and later Fellman (1980) 

presented the following theorem. 

Theorem 1.3.5. A class of continuous distributions ),( xF  with finite mean 

has a common Lorenz curve if and only if )(),( xFxF   . 
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The formula for Gini coefficient G is given in (1.1.7) and G satisfies the 

inequality 10 G . The higher G value the stronger inequality in the income 

distribution. Later, alternative inequality indices have been defined and 

introduced. The generalized Gini coefficient 


1

0

2 )()1()1(1)( dppLpG  , 

where 1 , is given in (1.1.3) and has been proposed by Yitzhaki (1983) in 

order to identify different distribution properties. The welfare index 

 1W G  , given in (1.1.8) and proposed by Sen (1973) is based on the 

mean income (  ) and the Gini coefficient ( G ). 

Kleiber and Kotz (2001, 2002) have outlined how the income distributions 

can be characterised by their Lorenz curves:  

1.4  Modelling Lorenz Curves 

As an alternative to income distributions some scientists have built models 

for the Lorenz curve. Among these we may list the following studies: Kakwani 

& Podder (1973, 1976), Kakwani (1980), Rasche et al. (1980), Gupta (1984), 

Rao & Tam (1987), Chotikabanich (1993), Ogwang & Rao (2000), Cheong 

(2002), Rohde (2009) and Fellman (2012). The theoretical step from Lorenz 

curve to distribution function is more difficult than that from distribution 

function to Lorenz curve. Fellman (2012) noted that there is a difference 

between advanced and simple Lorenz models. Advanced Lorenz models yield a 

better fit to data, but are difficult to exactly connect to income distributions. 

Simple one-parameter models can more easily be associated with the 

corresponding income distribution, but when statistical analyses are performed 

the goodness of fit is often poor. 
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Rao and Tam (1987) compared five different models. The first was the three-

parameter Kakwani & Podder (KP) model (1973), 

  
10

,102

0







c

ba

a

cb   (1.4.1) 

where 
2

pL 
  and 

2

pL 
 . 

The second is the two-parameter generalised Pareto model (GP) analysed by 

Rasche et al. (1980) 

   ,
10

10
)1(1

1






b

a
pL ba

GP  (1.4.2) 

and the third is the one-parameter Gupta (G) model (1984)  

 1,1    p
G pL . (1.4.3) 

In addition, Rao and Tam constructed a generalized two-parameter Gupta 

model (RT) 

 1,,1    apL pa
RT . (1.4.4) 

Finally, they introduced a simplified one-parameter version (S) of the RT 

model ( 1 ) 

 1 a
S pL  (1.4.5) 

Chotikabanich (1993) defined an alternative one-parameter Lorenz curve (C):  

 0
1

1
)( 




 k

e

e
pL

k

kp

C
. (1.4.6) 
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The models G, S and C contain only one parameter. They are so simple that it 

is impossible to distinguish between the estimated length of the range for the 

income distribution function and the Gini coefficient. If one of these properties 

is estimated the other is fixed. Therefore, Fellman (2012) paid these models 

special attention and analysed them in more detail. 

In general, the step from the Lorenz curve to the income distribution starts 

from the formula 

 

p
x

)p(L  , (1.4.7) 

where 
p

x  is the p-percentile and µ is the mean of the corresponding distribution 

)x(F . We define )(M   as the inverse function of  L . From (1.4.7) we obtain  

 











p
x

Mp .  (1.4.8) 

Equation (1.4.8) indicates that )(M   is the income distribution function 

corresponding to the given Lorenz curve, that is, 











x
MxF )( . This 

connection between the Lorenz curve and the distribution function is easily 

defined, but for most of the exact Lorenz curves it is difficult or even 

impossible to obtain the income distribution mathematically. 

The Gupta model. Examples of Lorenz curves for the Gupta model (1.4.3) 

are given in Figure 1.4.3.  

Following Gupta, we observe that 

 



p1p1p

G

x
logp)p(L  

. (1.4.9) 
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Consequently, 

 



 

 
G

p
p

p
Lx

00
limlim  (1.4.10) 

and 

 
)log1(limlim

11
 

 
G

p
p

p
Lx

  (1.4.11) 

From this it follows that Gupta ś model corresponds to distributions defined 

on a finite interval  )log1(,1   . In spite of the fact that the Gupta 

model is relatively simple, the corresponding income distribution is not 

attainable. The equation (1.4.9) cannot be solved exactly with respect to 

variable p because the variable p can be found both as a factor and in the 

exponent.  

 

Figure 1.4.3  The Lorenz curves for the Gupta model for various β  

values (Fellman, 2012). 
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For the Gupta model, the Gini coefficient is  

 






 
 










log

1
1

log

2
121

1

0

1dppG p
G .  (1.4.12) 

Figure 1.4.3 shows that the Gini coefficient tends towards 1 when  .
2
  

Following Gupta, the variable log  can be estimated by using the logarithm 

of the model in (1.4.4), that is, from the equation )log()1(log 







p

p

L
.  

The generalized Gupta model (RT). For the generalized Gupta model, we 

obtain. 

  111 log)(   pp
G

p
pppL

x





. (1.4.13) 

The income distribution is defined on the interval  0, ( log )   . It can be 

observed that if   the range of the income distribution then tends towards 

 ,0  for both the Gupta and the generalized Gupta models.  

Following Gradsheteyn and Ryshnik (1965), Rao and Tam give for the 

generalised Gupta model the Gini coefficient 

  



log;2;121 11
)1(

log

 


FeGRT

, (1.4.14) 

where 
11

F  denotes the confluent hyper-geometric function with the parameters 

indicated in the parentheses.  

                                                           
2In Rao and Tam (1987), the formula for the Gini coefficient based on the Gupta model contains a misprint, 

but a numerical check of the Rao and Tam results indicates that the authors have used the correct formula in 
their calculations.  
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The simplified RT model (S). The simplified RT model is obtained for 

1  and is given in (1.4.5). The Lorenz curves for various   values are 

given in Figure 1.4.4. 

 

Figure 1.4.4  Rao-Tam simplified Lorenz curves (Fellman, 2012). 

The Gini coefficient is 
1

1
G

S







. The income distribution corresponding to 

the S model can be found. The derivative of p)p(L
S

 is 1

S
p)p(L   .  

We obtain 1

S

p
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x
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
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

 p1
x

p   and 
1

1

p
x

p















.  

Hence, the income distribution is 
1

1

x
)x(F
















 defined on the interval 

 ,0 . Income distributions are given in Figure 1.4.5 for various α values. 
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Figure 1.4.5  Income distributions corresponding to the Rao-Tam simplified  

Lorenz curve (Fellman, 2012). 

The Chotikabanich model. Chotikabanich (1993) introduced an alternative 

one-parameter Lorenz curve (cf. 1.4.6)  

0
1

1
)( 




 k

e

e
pL

k

kp

C . 

It is easily found that  

0)0(L
C

 , 1)1(L
C

 , 0
1e

ke

dp

)p(dL
k

kp

C 


  

and  

0
1e

ek

dp

)p(Ld
k

kp2

2

C

2




 . 

 

0 

0.2 

0.4 

0.6 

0.8 

1 

0 1 2 3 4 5 

- Income distributions for the simplified Rao Tam model 

?=1.5 

?=2 

?=3 

?=4 

?=5 



Chapter 1  Introduction          33 
 

http://www.sciencepublishinggroup.com 

The second derivative is positive and hence the Lorenz curve is convex. 

Consequently, the first derivative is increasing from the minimum 

0
1e

k

dp

)0(dL
k

C 


  to 
1e

ke

dp

)1(dL
k

k

C


 .  

If we consider an income distribution with the mean  , then income is 

distributed over the interval (
1e

k
k 


,

1e

ke
k

k




). When k , this interval 

converges towards (0 , ) 

Lorenz curves as functions of parameter k are given in Figure 1.4.6. 

 

Figure 1.4.6  Lorenz curves for the Chotikabanich models (c.f. Fellman, 2012). 
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The Gini coefficient increases toward 1 when k  . 

If we assume an arbitrary  , then 
1e

ke
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)p(dL
x

k

kp

C

p





 and we get 

pk

kp

x
1e

ke





. Hence, 







 


k

)1e(x
log

k

1
)x(F

k


 and the theoretical income 

distribution is obtained.  

Figure 1.4.7 presents income distributions for various k values. 

  

Figure 1.4.7  Income distributions for the Chotikabanich models (Fellman, 2012). 
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Kakwani and Podder (1976) applied their Lorenz model to Australian data, 

comparing four alternatives, of which all resulted in accurate estimates. The 

estimates varied between 0.3195 and 0.3208 when the actual value was 0.3196. 

Rao and Tam (1987) applied the Kakwani-Podder, the generalised Pareto, the 

RT, the Gupta and the simplified RT models to the same data. Their comparison 

of the models indicates that the Kakwani-Podder, the generalised Pareto and the 

RT model yielded the best estimates. The G and the S models resulted in 

estimates with the largest errors. For the Gupta model, the estimate was too high 

(0.3691) and for the simplified RT model it was too low (0.2508). The 

magnitudes of these errors were comparable. These findings support the 

criticism of the estimation based on simple one-parameter Lorenz models.  

Fellman (2012) applied the Chotikabanich model and obtained the following 

results. He considered  
2

obs
k

)k(ffmin   and estimated the parameter k and 

performed the minimization by using Lf   and )Llog(f  . Fellman fitted the 

model to the Kakwani & Podder data obtained, 2095.0k   and 0.3262G  , and 

2097.0k   and 0.3263G  , respectively. He observed that the one-parameter 

Chotikabanich model yields slightly better but still less exact results. As a 

comparison, he presented Lorenz models fitted to the Australian data 

graphically in his Figure 6, which we reprint in Figure 1.4.8. One observes that 

the Chotikabanich model is closest to the empirical curve. The simplified RT 

and the Gupta models show larger but comparable discrepancies. These findings 

support the results obtained by Rao and Tam. In Figure 1.4.8, we also observe 

that Gupta model yields too high an estimate of G and the simplified model too 

low an estimate. 
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Figure 1.4.8  Graphical presentation of the goodness of fit obtained by the Gupta,  

RT and Chotikabanich models. Note that the Chotikabanich gives the best fit  

(Fellman, 2012). 

Fellman (2012) studied the numerical estimation of the Gini coefficient based 

on Lorenz curves and this is discussed more in detail in Section 2.4. The methods 

were the trapezium rule, Simpson ś rule, a modified version of Golden ś method 

(2008) and the Lagrange method. In Fellman (2012) the Simpson rule could not 

be performed because it demands equidistant points. In general, the trapezium 

rule yields Gini coefficients which are too low. For the Australian data, the 

trapezium rule yielded the result 0.3134, which is slightly below the correct value. 

Since the Lagrange method demands an even number of sub-intervals, Fellman 

(2012) had to modify the method slightly. He applied the Lagrange method for 

the ten last sub-intervals and added a small (triangular) correction from the first 

sub-interval. The estimate obtained was 0.3199, a result which is closest to the 

correct value. Fellman (2012) presented a modified version of Golden ś method. 

When he applied this method to the Australian data, he obtained the estimate of 

0.3075. This is too low, but still greater than the extremely low value obtained by 

the simplified RT model. Summing up, one has to choose the Lorenz model with 

due consideration. This is especially important if the selection should be 

performed among simple one-parameter models. 
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Redistributions of income according to tax or transfer policies can be 

considered as variable transformations of the initial income. The transformation 

is usually assumed to be positive, monotone-increasing and continuous. Re-

cently, Fellman (2009, 2011) has also discussed discontinuous transformations. 

If the transformation is considered as a tax or a transfer policy, the transformed 

variable is either the post-tax or the post-transfer income. A central problem in 

the literature has been the Lorenz dominance, defined above, between the initial 

and the transformed income (c.f. Fellman, 1976; Jakobsson, 1976; Kakwani, 

1977) (see also Theorem 2.1.1 below). Under the assumption that the theorems 

should hold for all income distributions, the conditions are both necessary and 

sufficient (Jakobsson, 1976; Fellman, 2009).  

2.1  Income Redistributions 

Variable transformations are valuable when one studies the effect of tax and 

transfer policies on the income inequality. If the transformation should result in 

an increasing transformed variable with finite mean then discontinuities can 

only consist of finite positive jumps and the number of jumps has to be finite or 

countable. In this study we reconsider the effect of variable transformations on 

the redistribution of income (Fellman, 1976, Jakobsson, 1976, Kakwani, 1977 

and Hemming & Keen, 1983). The continuity of the transformations can be 

implicitly included in the necessary and sufficient conditions. One main result is 

that continuity is a necessary condition if one pursues that the income inequality 

should remain or be reduced.  

Consider the income X with the distribution function )x(
X

F , the mean 
X

 , 

and the Lorenz curve )p(L
X

. We assume that X is defined for 0x  . If we 

assume that the density function )x(f
X

 exists, we follow Section 1.1 and 

obtain the formulae 
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 



0

XX
dx)x(fx  (2.1.1) 

and 

 

px

0

X

X

X
dx)x(fx

1
)p(L


.  (2.1.2) 

We consider the transformation )X(uY  , where )(u   is non-negative and 

monotone increasing. The transformation can be considered as a tax or a 

transfer policy and consequently, the transformed variable is the post-tax or 

post-transfer income, respectively.  

For the transformed variable Y we obtain the distribution function 

          yuFyuXPyXuPyYPyF XY
11)()(    (2.1.3) 

Using this result we obtain the mean and the Lorenz curve for the variable Y.  

 
1

0

XY
dx)x(f)x(u   (2.1.4) 

and 

 

px

0

X

Y

Y
dx)x(f)x(u

1
)p(L


. (2.1.5) 

The fundamental theorem is: 

Theorem 2.1.1. (Fellman, 1976, Jakobsson, 1976 and Kakwani, 1977). Let X 

be an arbitrary non-negative, random variable with the distribution )x(F
X

, 

mean 
X

  and Lorenz curve )p(L
X

. Let )x(u  be non-negative, continuous and 

monotone-increasing and let  )X(uE
Y
  exist. Then the Lorenz curve 

)p(L
Y

 of )X(uY   exists and the following results hold: 
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(i) )p(L)p(L
XY

  if 
x

)x(u
 is monotone decreasing. 

(ii) )p(L)p(L
XY

  if 
x

)x(u
 is constant and 

(iii) )p(L)p(L
XY

  if 
x

)x(u
 is monotone increasing. 

According to this theorem we obtain in (i) a sufficient condition that the 

transformation )x(u  generates a new income distribution which Lorenz 

dominates the initial one. If we analyse the proof of the case (i) in Fellman 

(1976, Theorem 1) we observe that the difference )p(L)p(L
XY

  can be 

written 

  









px

0

X

XY

XY
dx)x(f

x)x(u
)p(L)p(L)p(D


 (2.1.6) 

where )p(Fx 1

Xp

 . In any case, 0)1(D)0(D  . In order to obtain Lorenz 

dominance the difference )p(D  must start from zero and then attain positive 

values and after that decrease back to zero and the integrand in (2.1.6) must start 

from positive (non-negative) values and then change its sign and become 

negative. Consequently, 
x

)x(u
 has to be a decreasing function.  

The condition is necessary if the rule should hold for all income distributions 

)x(F
X

 (Jakobsson, 1976). Otherwise we can find a transformation )x(u  for 

which the quotient 
x

)x(u
 is not monotone decreasing for all 0x  , and a 

distribution )x(F
X

 such that the result in the proof holds, i.e. dominance is 
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obtained. Assume that the quotient 
x

)x(u
 is both increasing and decreasing.

3
 

Let a transformation )x(u  satisfy the initial conditions (non-negative, 

continuous and monotone increasing) and let 
x

)x(u
 be increasing within some 

interval (  bxa0 ). Now we present a distribution such that the 

transformed variable )X(uY   does not Lorenz dominate the initial variable X. 

Consider a distribution with a continuous density function, 

 

















bx0

bxa0)x(f

ax00

)x(f
0X

 (2.1.7) 

For the pair ( )x(f
X

, )x(u ) the formula (2.1.6) can be written 

 dx)x(f
x

)x(ux
)p(D

X

x

a X

Y

Y

p

 













, (2.1.8) 

where bxa
p
 .  

We observe that 0)1(D)0(D  , that Theorem 1(iii) holds and that the 

transformation results in a new variable Y which is Lorenz dominated by the 

initial variable X. Hence, if we demand that the transformed variable )X(uY   

shall Lorenz dominate X for all distributions )x(F
X

, then the condition in 

Theorem 2.1.1 (i) is necessary (Jakobsson, 1976, Lambert, 2001; Chapter 8). 

                                                           

3If 
x

xu )(
 is monotonously increasing for all 0x  then the proposition (iii) holds and this case can be 

ignored. 
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Hemming and Keen (1983) gave a new condition for the Lorenz dominance. 

Their condition is, with our notations, that for a given distribution )x(F
X

 the 

function )x(u  crosses the line x
X

Y




 once from above, that is that 

x

)x(u
 

crosses the level 
X

Y




 once from above. We observe that if their condition holds 

then the integrand in (2.1.6) starts from positive values changes its sign once 

and ends up with negative values and their condition is equivalent with our 

condition. For the example considered above, the Hemming-Keen condition is 

not satisfied. The integrand is zero for ax   and for bx  . For bxa   the 

ratio 
x

)x(u
 is increasing and if it crosses 

x

Y




 it cannot do it from above. 

Consequently, if 
x

)x(u
 is not monotone decreasing then there are distributions 

for which the Hemming-Keen condition does not hold.  

On the other hand if we assume that 
x

)x(u
 is monotone decreasing then 

x

)x(u
 satisfies the condition ―crossing once from above for every distribution 

)x(F
X

‖. Hence, our condition and Hemming-Keen condition are also 

equivalent as necessary conditions.  

In a similar way we can prove that if the other results in Theorem 2.1.1 

should hold for every income distribution the conditions in (ii) and in (iii) are 

also necessary. 
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The results obtained, indicate that if 
x

)x(u
 is continuous and monotone 

increasing even in a short interval, then there are income distributions such that 

the transformation )x(u  cannot result in Lorenz dominance. What can be said 

if )x(u  is discontinuous? Assume that )(xu  is still positive and monotone 

increasing. Assume furthermore, that  
Y

)X(uE   exists for every stochastic 

variable X with finite mean 
X

 . Above we stressed that the discontinuities of 

)x(u  can only consist of finite positive jumps and the number of jumps can be 

assumed to be finite or countable. Assume that elsewhere )x(u  satisfies all the 

other conditions including the condition in Theorem 2.1.1(i). We will prove that 

if )x(u  is discontinuous there exists a distribution )x(F
X

 such that the 

transformation )X(uY   does not Lorenz dominate the initial variable X. 

Again we follow the arguments given by Jakobsson (1976). However, the 

discontinuity demands a more detailed reasoning. 

Let 0a   be a discontinuity point, such that 
0ax

u)x(ulim 


 and 

du)x(ulim
0ax



, where the jump 0d  . (The notation )x(ulim

ax 
 

indicates limit from the left and )x(ulim
ax 

 limit from the right.) We do not 

assume anything about how )x(u  is defined in the point a . The following 

analyses are based on Fellman (2009). Choose 0h   so small that the point a  

is the only discontinuity point within the interval  ha,ha  . (Later we may 

reduce the interval even more). Let t and z be arbitrary values satisfying the 

inequalities 

hazatha  . 

If )x(u  is monotone increasing we have )z(uduu)t(u
00

  and  
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





















z

)z(u
lim

a

du

a

u

t

)t(u
lim

az

00

at . 

Hence, the quotient 
x

)x(u
 cannot be monotone decreasing within the interval 

 ha,ha  . Consider a variable X, having the symmetric density function 

 


























hax0

haxhaxa
h

1
1

h

1

hax0

)x(f
X . (2.1.9) 

The mean aXE X  )( . For the transformed variable )(XuY   the mean 

is 

 

 )()(
2

1

)()()()(

)()()()()(

21

21







uu

dxxfudxxfu

dxxfxudxxfxuYE

ha

a

X

a

ha

X

ha

a

X

a

ha

XY


















, (2.1.10) 

where aha
1
   and haa

2
 .  

If 0h  then d
2

1
u

0Y
 . Assume furthermore, that we have chosen h so 

small that d
4

1
u

0Y
 . Consider now 

 












px

ha

X

X

Y

Y

XY
dx)x(f

x

)x(ux
)p(L)p(L)p(D






, (2.1.11) 
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where p)x(F
pX
 . In order to obtain Lorenz dominance the integrand must 

start from positive (non-negative) values and then change its sign and become 

negative in such a manner that the difference )p(D  starts from zero and then 

attains positive values and after that it decreases back to zero. Within the 

interval  ha,ha   the sign of the integrand depends on the factor 

X

Y

x

)x(u




 , which starts from the value 

)ha(a

)d
4

1
u(had

4

1

a

d
4

1
u

ha

u

aha

)ha(u 00
0Y















  . 

If we assume that h satisfies the earlier conditions and in addition, the 

condition 
du4

ad
h

0


 , the parenthesis in (2.1.11) starts from negative values 

and consequently, the whole integrand is negative and )p(D  starts from 

negative values. For the corresponding income distribution the transformed 

variable Y does not Lorenz dominate the initial variable X. Hence, the continuity 

of )x(u  is a necessary condition if we demand that the transformed variable 

should Lorenz dominate the initial variable for every distribution. From this it 

follows that if the condition in Theorem 2.1.1(i) has to be necessary it implies 

continuity and hence, an explicit statement of continuity can be dropped. If we 

study the condition in (ii) we observe that kx)x(u   and consequently, )x(u  

has to be continuous.  

However, in the case (iii) the discontinuity does not jeopardize the monotone 

increasing property of the quotient 
x

)x(u
 and the result in Theorem 2.1.1 (iii) 
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holds even if the function is discontinuous. Therefore, also in this case we can 

drop the explicit continuity assumption. 

Summing up, for arbitrary distributions, )x(F
X

, the conditions (i), (ii), and 

(iii) in Theorem 2.1.1 are both necessary and sufficient for the dominance 

relations and an additional assumption about the continuity of the 

transformation )x(u  can be dropped. We obtain the more general theorem 

(Jakobsson, 1976; Fellman, 2009). 

Theorem 2.1.2. Let X be an arbitrary non-negative, random variable with the 

distribution )x(F
X

, mean 
X

  and the Lorenz curve )p(L
X

, let )x(u  be a non-

negative, monotone increasing function and let )X(uY   and 
Y

)Y(E   exist. 

Then the Lorenz curve )p(L
Y

 of Y exists and the following results hold: 

(i) )p(L)p(L
XY

  if and only if 
x

)x(u
 is monotone-decreasing. 

(ii) )p(L)p(L
XY

  if and only if 
x

)x(u
 is constant. 

(iii) )p(L)p(L
XY

  if and only if 
x

)x(u
 is monotone-increasing. 

Remark. From the discussion above it follows that only in the case (iii) the 

transformation )(xu can be discontinuous. 

Now, we analyse the effect of a finite step in )x(u  on the Lorenz curve. We 

use the notations presented above.  

Let zat  , )t(Fr
X

 , )a(Fq
X

  and )z(Fs
X

 .  

Consider the difference 
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     

z

t

X
Y

XYXYY dxxfxutFLzFLL )(
1

)()(


 

    

z

a

X
Y

a

t

X
Y

dxxfxudxxfxu )(
1

)(
1


   qs

u
rq

u

YY








 )()( 11
 

where at
1
  and za

1
  . 

When  at  and  az , then 0rq  , 0qs   and 0L
Y
 . 

Hence, although the transformation )x(u  is discontinuous in the point a, the 

Lorenz curve is continuous. However, it is not differentiable. For every at   

we obtain  

  

a

t Y

X

Y

YYY
)rq(

)(u
dp)x(fxu

1
)r(L)q(LL





  

where at  . We obtain 
Y

Y
)(u

rq

L









. When  0rq  then  a  

and 
Y

0Y
u

rq

L







. Hence, )p(L

Y
 has the left derivative 

Y

0

qp

Y
u

dp

)p(dL














.  

For every az   we obtain  

 )q(L)s(LL
YYY

)qs(
)(u

dp)x(f)x(u
1

X

s

q

X

Y

 




, 

where za   . We obtain 
Y

Y
)(u

qs

L









. When  0qs  then  a  

and 
Y

0Y
du

qs

L









. Hence, )p(L

Y
 has the right derivative 
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






















qp

Y

Y

0

Y

0

qp

Y

dp

)p(dLudu

dp

)p(dL


. (2.1.12) 

Consequently, )p(L
Y

 is continuous in the point )a(Fq
X

  but it is not 

differentiable and has a cusp for qp  . 

Remark. If the transformation )x(u  is continuous then 0d   and we obtain 

equality in (2.1.12) and the Lorenz curve is differentiable with the derivative 

Y

p

Y

y
)p(L


 .  

For progressive taxations, )x(u  is the post-tax income and 
x

)x(u
 measures 

the proportion of post-tax income to the initial income and it is a monotone 

decreasing function satisfying the condition (i) and the Lorenz curve is 

increased and )y(F
Y  Lorenz dominates )x(F

X . If the taxation is a flat tax then 

(ii) holds and the Lorenz curve and the Gini value remain. The third case in 

Theorem 2.1.1 indicates that the ratio 
x

)x(u
 is increasing and the Gini 

coefficient increases, but this case has minor practical importance. If transfer 

policies are studied, then the ratio 
x

)x(u
 measures the relative effect of the 

transfer. If it decreases the relative effect of the transfer decreases with 

increasing income and the inequality is reduced. If 
x

)x(u
 is constant, the 

transformation )x(u  is proportional to the initial income and the Lorenz curve 

and the Gini value remain.  
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2.2  Additional Properties of Lorenz Curves for 

Transformed Income Distributions 

We follow Fellman (2012b) who considered income X, defined on the 

interval  b,a , where  bxa0 , with the distribution function )x(FX , 

density function )x(f
X

, mean 
X

 , percentile 
p

x  defined as p)x(
pX

F   and 

Lorenz curve )p(L
X

. The general formulae are 

 
b

a

XX
dx)x(fx  (2.2.1) 

and 

 

px

a

X

X

X
dx)x(fx

1
)p(L


, (2.2.2) 

where bxa
p
 .  

We consider the transformation )X(uY  , where )(u   is non-negative, 

continuous and monotone-increasing. Since the transformation can be 

considered as a tax ( x)x(u  ) or a transfer policy ( x)x(u  ), the transformed 

variable is either the post-tax or the post-transfer income.  

The mean and the Lorenz curve for variable Y are  

 
b

a

XY
dx)x(f)x(u  (2.2.3) 

and 

 

px

a

X

X

X
dx)x(f)x(u

1
)p(L


, (2.2.4) 
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In the following, we consider additional properties of the Lorenz curve 

)p(L
Y

. If 
x

)x(u
 is constant, then according to Theorem 1 (ii), )p(L)p(L

XY
  

and the transformed Lorenz curve is identical with the initial one, a case which 

will be ignored. 

(a) The ratio 
x

)x(u
 is monotonically decreasing. 

According to Theorem 2.1.1, )y(
Y

F  Lorenz dominates )x(
X

F . We 

introduce the values M  and m  such that 


M
x

)x(u
lim

ax
 and 

0m
x

)x(u
lim

bx



. Consequently, 0m

x

)x(u
M  .  

Let p)x(
pX

F   and q)x(
qX

F  . Assume that qp   and that 

bxxxa qp   and consequently, 

m
x

)x(u

x

)x(u

x

)x(u
M

q

q

p

p
 . 

Note that points p  and q  are chosen arbitrarily and that the equality signs 

cannot be ignored because we also include the functions 
x

)x(u
, which are not 

uniformly strict decreasing in the class of transformations. Hence, we have to 

include members for which equalities hold for almost the whole range and, in 

addition, sub-intervals in which strict inequalities hold can be chosen arbitrarily 

short and located arbitrarily within the range ( ,a b ). If one pursues general 

conditions, the inequalities (2.2.8) and (2.2.9) obtained below cannot be im-
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proved. If we assume that 
x

)x(u
 is monotonically decreasing, then )x(u  must 

be continuous, otherwise 
x

)x(u
 should have positive jumps (Fellman, 2009). 

From 
x

)x(u

x

)x(u

p

p
  it follows that )()( pp xuxxux  . The integration over 

the interval 
qp

xxx   yields  

 

q

p

q

p

x

x

Xp

x

x

Xp
dx)x(f)x(xudx)x(f)x(ux  

 

q

p

q

p

x

x

Xp

x

x

Xp
dx)x(xf)x(udx)x(f)x(ux  

   )p(L)q(L)x(u)p(L)q(Lx
XXXpYYYp

 
 

and 

    )p(L)q(L
x

)x(u
)p(L)q(L

XX

Yp

Xp

YY





. (2.2.5) 

Analogously, it follows from 
q

q

x

)x(u

x

)x(u
  that )x(xu)x(ux

qq
 , and we 

obtain 

    )p(L)q(L
x

)x(u
)p(L)q(L

XX

Yq

Xq

YY





. (2.2.6) 

Consequently, 

     )()()()(
)(

pLqLpLqL
x

xu
YYXX

pY

Xp




 )()(

)(
pLqL

x

xu
XX

qY

Xq





. (2.2.7) 
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When 0p   in (2.2.7), then 0)p(L
Y

 , 0)p(L
X

 , M
x

)x(u

p

p
  and 

one obtains  

 )q(L
x

)x(u
)q(L)q(L

M
X

qY

Xq

YX

Y

X








 . (2.2.8) 

The lower bound gives an evaluation of how much the Lorenz curve has 

increased. The upper bound is of minor interest and is commented on later.  

When 1q   in (2.2.7), then 1)q(L
Y

 , 1)q(L
X

 , m
x

)x(u

q

q
  and one 

obtains  

   )p(L1
x

)x(u
1)p(L)p(L1

m
1

X

pY

Xp

YX

Y

X 







. 

In order to compare these inequalities with the inequalities in (2.2.8), we 

change the argument from p to q, and the inequalities are 

   )q(L)q(L1
m

1
YX

Y

X




 

  )q(L1
x

)x(u
1

X

qY

Xq





. (2.2.9) 

The lower bound gives an evaluation of how much the Lorenz curve has 

increased. The upper bound is of minor interest and is discussed later.  

Inequality (2.2.8) is applicable to small values and inequality (2.2.9) to large 

values of q. For small values of q, we consider the difference  

 )q(L
x

)x(u
)q(L)q(D

X

qY

Xq

Y1



  (2.2.10) 
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and for large q we consider the difference  

  )q(L1
x

)x(u
1)q(L)q(D

X

qY

Xq

Y2





. (2.2.11) 

In general, 
Y

q

Y

qY
)x(uy

dq

)q(dL


  and 

X

qX
x

dq

)q(dL


 .  

The ratio 
x

)x(u
 is decreasing and consequently 

  0x
dq

d

x

y

dx

d

x

y

dq

d

x

)x(u

dq

d
q

q

q

qq

q

q

q













































. 

Now we differentiate )q(D
1

and obtain  

 1
( ) ( ) ( )( )

( )

( )
( ) 0

q q q qX X

X

Y Y q X Y q

qX

X

Y q

u x u x x u xd D q d
L q

dq x dq x

u xd
L q

dq x

 

   





 
    

 
 

 
   

 
 

. 

Consequently )q(D
1

 is increasing from zero at 0q   to a maximum 

)q(D
01

 for 
0

qq   (say).  

Now we differentiate )q(D
2

 and obtain  

 
 
















q

q

Y

X
X

Y

q

Y

q

x

xu

dq

d
qL

xuxu

dq

qDd )(
)(1

)()()(2







  0
)(

)(1 















q

q

Y

X
X

x

xu

dq

d
qL




. 
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Consequently )q(D
2

 is decreasing from )q(D
02

 to zero when 1q  . The 

point 
0

q , at which the shift from (2.2.10) to (2.2.11) is performed, is chosen so 

that )q(D)q(D
0201

 .  

Now,  

  )q(L
x

)x(u
)q(L)q(L1

x

)x(u
1)q(L

0X

qY

Xq

0Y0X

qY

Xq

0Y

0

0

0

0








 ; 

that is, 

0
x

)x(u
1

0

0

qY

Xq





 and 

X

Y

q

q

0

0

x

)x(u




 . 

Consequently,  

)q(L)q(L)q(D)q(D
0X0Y0201

  

Since the ratio 
Y

X

x

)x(u




 is decreasing, the difference 0

x

)x(u

X

Y

q

q

0

0 



 shifts 

its sign from plus to minus at point 
0

q . Hemming and Keen (1983) gave the 

condition for Lorenz dominance that 
x

)x(u
 crosses the 

X

Y




 level once from 

above. Our results above have shown that the crossing point is 
0

q . The 

condition obtained can also be otherwise explained. If we write it as 

X

q

Y

q 00
x)x(u


 , we obtain the formula 

00 qq

X

qq

Y

dq

)q(dL

dq

)q(dL


 , that is, the 

Lorenz curves )q(L
Y

 and )q(L
X

 have parallel tangents and the distance 

)q(L)q(L
0X0Y

  between the Lorenz curves is maximal for 
0

qq  . 
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We define the difference function as 

 









02

01

qq)q(D

qq)q(D
)q(D

~

for

for
, (2.2.12) 

and the lower bound of )p(L
Y

 is 

 

 


















0X

qY

Xq

0X

qY

Xq

qq)q(L1
x

)x(u
1

qq)q(L
x

)x(u

)q(L
~

for

for









. (2.2.13) 

Figure 2.2.1 shows the Lorenz curves )q(L
Y

, )q(L
X

, the lower bound 

)q(L
~

and the difference )q(D
~

 between )q(L
Y

 and the lower bound )q(L
~

. 

Remarks. The variable Y Lorenz dominates X, and the upper bounds in 

(2.2.8) and (2.2.9) tells us nothing about the reductions in the inequality. The 

upper bound contains the maximum value M  and one has to take it for granted 

that it is also inaccurate when M is finite. In addition, there may be situations in 

which M . The minimum value m can be zero, and in this case the upper 

bound is one and the obvious inequality 1)p(L
Y

  is obtained. 
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Figure 2.2.1 (Fellman (2012b) A sketch of the Lorenz curves )(qLY , )(qLX , the lower 

bound )(
~

qL , and the difference )(
~

qD  between )(qLY  and the lower bound )(
~

qL  when 

the transformed variable Lorenz dominates the initial one.  

(b) The ratio 
x

)x(u
 is monotonically increasing. 

The analysis of this case follows similar traces to the earlier study and the 

results are analogous to our earlier results, but in this case )(xu  may be 

discontinuous. Only the inequality signs have changed their directions. We 

introduce the values M  (  ) and m ( 0 ) such that  

m
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)x(u
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and consequently  M
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m0 . Note, that in this case the points p  
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because we also include functions 
x

)x(u
 which are not uniformly strictly 

increasing in the class of transformations. Hence, we have to include members 

for which equalities hold for almost the whole range and, in addition, the 

subintervals where strict inequalities hold can be arbitrarily short and can be 

located arbitrarily within the range. If one pursues general conditions, the 

inequalities (2.2.17) and (2.2.18) obtained below cannot be improved. 

If )x(u  is discontinuous, the discontinuities can only be a countable number 

of finite positive jumps. Under such circumstances )x(u  is still integrable. 

We use the same notations as above and assume that p)x(
pX

F  , 

q)x(
qX

F  , that qp   and consequently that 
qp

xxx  . Now, 

q

q

p

p

x

)x(u

x

)x(u

x

)x(u
 . Consider )x(xu)x(ux

pp
 . The integration over the 

interval 
qp

xxx   yields  
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q
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q
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x
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x
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   )p(L)q(L)x(u)p(L)q(Lx
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and 

    )p(L)q(L
x

)x(u
)p(L)q(L

XX

Yp

Xp

YY





. (2.2.14) 

Analogously, if we consider )x(xu)x(ux
qq

  we obtain 
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   )p(L)q(L)x(u)p(L)q(Lx
XXXqYYYq

 
 

and  

    )p(L)q(L
x

)x(u
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Yq
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Hence, 
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  )()(
)(

pLqL
x

xu
XX

qY

Xq





. (2.2.16) 

When 0p   in (2.2.16), then 0)( pLY , 0)( pLX , m
x

xu

p

p


)(
 and 

one obtains  
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Now, the initial variable X Lorenz dominates the transformed Y and the upper 

bound is the interesting case.  

When 1q   in (2.2.16), then 1)1( YL , 1)( qLX , M
x

xu
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)(
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After a shift from p to q, we obtain 
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    )(11)()(1
)(

1 qL
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X
YX

qY

Xq
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. (2.2.18) 

Now the upper bound is of interest. Formula (2.2.17) is applicable for small 

values and formula (2.2.16) for large values of q. In the following, we consider 

the difference between the upper bound in (2.2.17) and the Lorenz curve )q(L
Y

, 

that is, for small values of q, we obtain 

 )()(
)(

)(1 qLqL
x

xu
qD YX

qY
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


. (2.2.19) 

For large values of q, we consider the difference between the lower bound in 

(2.2.18) and the Lorenz curve )q(L
Y

, that is, for small values of q, we obtain 
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In general, 
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Now we differentiate )q(D
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Consequently )q(D
1

 is increasing from zero to a maximum for 
0

q . 
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Now we differentiate )q(D
2

 and obtain  
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Consequently )(2 qD  is decreasing from a maximum to zero. The point 

denoted 0q , at which the shift from )(1 qD  to )(2 qD  is performed, satisfies 
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This condition is identical with the condition in which 
x

xu )(
 is decreasing. 
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 have parallel tangents and the distance between the Lorenz 

curves is maximal. 



66         Mathematical Analysis of Distribution and Redistribution of Income 
 

http://www.sciencepublishinggroup.com 

 

Figure 2.2.2  (Fellman 2012b) A sketch of the Lorenz curves )(qLY , )(qLX , the upper 

bound )(
~

qL , and the difference )(
~

qD  between the upper bound )(
~

qL  and )(qLY when 

the transformed variable is Lorenz dominated by the initial one.  

We define the difference function as 
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Now the lower bounds are of minor interest because the initial variable X 

Lorenz dominates Y. Note that 0m   is possible in some situations and the 

lower bound in (2.2.17) can be zero. Note that M can be great and even M  

is possible in some situations and the lower bound in (2.2.18) can be even 

negative.  

Example 2.2.1 The Pareto distribution. Consider income X with the Pareto 

distribution  xxXF 1)(  and 1)(  xxf X , where 1  and 1x  .  

Now, 
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For 1 , the ratio 
x

xu )(
 is decreasing, this case being sketched in Figure 

2.2.1, and if 1  the ratio 
x

xu )(
 is increasing, this case being sketched in 

Figure 2.2.2. 

2.3  Regional and Temporal Variation in the Income 

Inequality 

We start with an example from Finland. 

Example 2.3.1. Finland 1971-1990. We illustrate our methods using data 

from Finland from 1971 to 1990 (Fellman et al., 1996). The theoretical analyses 

of the Finnish data are presented more in detail in Chapter 5. The base x for 

taxes includes all taxable income. From this we subtract direct taxes t to get the 

base for all non-taxable benefits b. These are child allowances and housing 

subsidies. We have standardized the income variables to be comparable across 

households of different sizes using the OECD equivalence scale, which assigns 

the weight of 1.0, 0.7 and 0.5 equivalent adults to the first and additional adults 

and children, respectively. We show in Table 2.3.1 the estimated generalized 

Gini coefficients for different values of the parameter ν and the relevant income 

concepts. Under the actual column we see the inequality indices for original 

income, x, post-tax pre-transfer income txy   and final income 
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btxby  . Household disposable income per equivalent adult is equal to 

btx  .  

We observe in Figure 2.3.1 that the Gini coefficients of original income for 

all ν´s decrease monotonically over the period, 1971-1990, indicating decreas-

ing income inequality.  

 

Figure 2.3.1  Generalized Gini coefficients in Finland, 1971-1990, for different ν´s. 

Eriksson and Jäntti (1997) showed that, in Finland, earnings inequality 

dropped dramatically between 1971 and 1975 and continued to decrease until 

1985. From 1985 to 1990 there was a substantial increase in the inequality of 

earnings, comparable in magnitude to that found in the UK and US. Further-

more, they showed that the rise in inequality increased in Finland between 1985 

and 1990 but this followed a sharp decline during the 1970s and early 1980s. 

The Figure 2.3.1 indicates that the conclusions given by Fellman et al. (1996) 

and Eriksson and Jäntti (1997) are similar for the period up to 1985 but after 

that they differ. 
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Table 2.3.1  Inequality of income in Finland 1971-1990. Generalized Gini  

coefficients for pre-tax, post-tax and post-transfer income for actual incomes.  

    Actual 

 Year x tx   btx   

 1971 0.193 0.176 0.173 

 1976 0.183 0.168 0.165 

1.5 1981 0.171 0.159 0.154 

 1985 0.172 0.155 0.151 

 1990 0.168 0.147 0.145 

 1971 0.294 0.271 0.267 

 1976 0.281 0.259 0.255 

2.0 1981 0.264 0.246 0.239 

 1985 0.265 0.241 0.235 

 1990 0.253 0.224 0.222 

 1971 0.359 0.333 0.328 

 1976 0.346 0.320 0.315 

2.5 1981 0.326 0.303 0.295 

 1985 0.327 0.299 0.291 

 1990 0.309 0.275 0.273 

 1971 0.405 0.378 0.372 

 1976 0.394 0.365 0.359 

3.0 1981 0.371 0.346 0.335 

 1985 0.373 0.342 0.332 

 1990 0.349 0.313 0.311 

 1971 0.512 0.483 0.476 

 1976 0.507 0.472 0.465 

5.0 1981 0.476 0.447 0.433 

 1985 0.482 0.448 0.434 

 1990 0.444 0.405 0.402 

Source: Fellman et al. (1996). 

Note: x is actual pre-tax income, t denotes taxes and b benefits.  

Gottschalk & Smeeding (1997) compared the trends in inequality in different 

countries during the last decades in the 20
th
 century. They noted marked differ-

ences. The first group consists of countries that experienced at least as large an 

increase in inequality as in the United States. This group includes only United 
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Kingdom. A second group which experienced substantial increases in inequality, 

but less than the United States and United Kingdom includes Canada, Australia 

and Israel. France, Japan, The Netherlands, Sweden and Finland form a third 

group with positive, but quite small changes in earnings inequality over the 

1980s. Figure 2.3.1 agrees with the findings by Gottschalk and Smeeding. 

While even the Nordic countries experienced some increase in earnings during 

the 1980s, they started from very low levels, resulting from a long secular 

decline in inequality. Finally, Italy and Germany form a small group that experi-

enced no measurable increase in earnings inequality during the 1980s.  

Bach et al. (2009) analyzed income distributions in Germany (1932-2003) 

using several indicators of income inequality. They found a modest increase of 

the Gini coefficient, a substantial drop of median income and a remarkable 

growth of the income share accruing the economic elite that is the 0.001 percent 

of persons in the population. Their findings are supported by a relative differ-

ence between mean and median income that measures the skewness of the 

distribution: a rise in this measure of inequality indicates that incomes in the 

upper half of the distribution have increased more than the lower half.  

In contrast to the findings for Finland (Fellman et al., 1996), income inequal-

ity in the United States has increased dramatically over the past 30 years. For 

instance, for households headed by working-age individuals, market incomes in 

the upper part of the distribution show an upwards trend in almost all periods 

since 1978, while they increased remarkably little in the middle and show large 

and sustained declines at the bottom during and after recessions. This is 

particularly true for the recent economic crisis. 

Levy and Murnane (1992) presented a thorough study of the income 

distribution in US and discussed the variation in the inequality. For males they 

found that the inequality moved from stability or gradual increases in the 1970s 
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to rapid increases in 1980s. For females they noted that annual earnings 

inequality moved from modest decline in the 1970s to increases in 1980s. They 

gave detailed interpretation of these general findings based on the variations in 

the composition of the labour force. 

Yun (2006) studied the earnings inequality in US, 1969-1999 using different 

inequality measures; the ninetieth-tenth percentile log wage differential, the 

coefficient of variation, the Gini coefficient, the Theil index and the variance of 

log earnings. All measures identify an increase in the inequality. The increasing 

trends varied. The inequality was stable until 1980, steadily increased from 

1980 to 1986, was stable again from 1987 to 1992 an increased thereafter. Autor 

et al. (2008) considered income inequality in US, 1963-2005. They found 

increasing trends and stressed that this trend was not an ―episodic‖ one, but a 

continuing increase reflecting the mechanical confounding effects of changes in 

labour force composition. They provided an overview of the literature on U.S. 

wage inequality and discussed if the substantial increase since the 1980s can be 

considered as an episodic event or a continuous development. 

Heathcote et al. (2010) conducted a systematic empirical study of cross-

sectional inequality in the United States. They found a large and steady increase 

in wage inequality between 1967 and 2006. Taxes and transfers compress the 

level of income inequality, especially at the bottom of the distribution, but have 

little effect on the overall trend. Meyer and Sullivan (2011) found that post-tax 

income inequality started to increase later (in the late 1970s) than that of pre-tax 

income and that its increase in the 1980s occurred at a slower rate. 

Analysing earlier results for US, Gottschalk and Danziger (2005) found that 

the development of male wage and family income inequality were largely 

comparable over the period 1975 to 2002. Bargain et al. (2011) noted increasing 

income inequality during the late 1970s and early 1980s. Furthermore, they 
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stated that the usual approach for evaluating the role of taxation as a driver of 

overall inequality trends is to compare income inequality measured before and 

after taxes (see e.g. Gottschalk & Smeeding 1997). However, tax burdens and 

their impact on the income distribution are determined by both tax schedule and 

tax base. For instance, a given progressive income tax schedule redistributes 

more when the distribution of taxable incomes becomes more dispersed, and 

very little if everybody earns about the same (Musgrave & Thin 1948; 

Dardanoni & Lambert 2002). Bargain et al. (2011) concluded that main findings 

are as follows. The increase in post-tax income inequality was slower than that 

of pre-tax inequality indicating that the redistributive role of the tax system has 

increased over time. However, their decomposition reveals that most of this 

increase in redistribution was not due to the policy effect but a mechanical 

consequence of the rising inequality in pre-tax income.  

2.4  Estimation of Gini Coefficients 

Fellman (2012a) analysed the estimation of Gini coefficients using Lorenz 

curves. Primary income data yields the most accurate estimates of the Gini 

coefficient. However, the estimation must often be based on tables with grouped 

data or on Lorenz curves. The Lorenz curves are usually defined for five 

quintiles or for 10 deciles. As explained above in Section 1.1 the Gini coeffi-

cient is defined as the ratio of the area between the diagonal and the Lorenz 

curve and the area of the whole triangle under the diagonal. For five quintiles, 

the trapezium rule is the most commonly used method. However, this rule 

yields for every trapezium positive bias for the estimate of the area under the 

Lorenz curve and, consequently, the rule causes negative bias for the Gini 

coefficient. Simpson ś rule is better fitted to the Lorenz curve, but demands an 

even number of subintervals of the same length. That is, Gini coefficients can 

be based on Lorenz curves given in deciles. 
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Various attempts have been made to produce more exact estimates. Gastwirth 

(1972) introduced interval estimates of the Gini coefficient in order to measure 

the accuracy of the estimates. Needleman ś study (1978) starts from the 

trapezium estimate of the Gini coefficient GL. He then introduces an improved 

upper estimate GU. His final estimate follows the ―two-thirds rule‖ that is 

3

2

3

UL GG
G  . McDonald and Ransom (1981) considered the Γ density, 

applied Monte Carlo methods and introduced lower and upper bounds of the 

Gini estimates.  

Golden (2008) showed how a quick approximation of the Gini coefficient can 

be calculated empirically, using numerical data in cumulative income quintiles. 

Fellman (2012a) compared different methods. He applied Simpson ś rule and 

considered Lorenz curves with deciles. In addition, he used Lagrange polynomi-

als and generalizations of Golden ś method. 

There are several different situations and, consequently, alternative analyses 

of Gini coefficients have to be performed. When Lorenz curves are considered, 

the simplest situation is that they are defined for five quintiles or for 10 deciles. 

In the first case, the most commonly used method is the trapezium rule. For 

Simpson ś rule, the number of subintervals should be even and the intervals 

should have the same length. This means, for example, that Lorenz curves with 

10 deciles are suitable. One has three L values for each doubled subinterval. The 

area under this part of the Lorenz curve is estimated so that the Lorenz curve is 

approximated by a parabola obtaining the same L values. Consequently, the 

comparison of different rules can be performed for Lorenz curves with deciles. 

Following Fellman (2012a) we assume a Lorenz curve )( pL  with deciles. 

Let the observed values of the cumulative Lorenz curve be ip  and 
i

L  for 
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10...,,1,0i . Note that 10/ipi  , ( 10...,,1,0i ), that 00 L  and that 110 L . 

According to the trapezium rule, the estimated area under the Lorenz curve is  

   ii

i

ii ppLLI  



 1

9

0

1½
~

 (2.4.1) 

and the estimated Gini coefficient, TG  is I
~

21 . Every trapezium yields a 

positive bias to the estimated area, as can be seen in Figure 2.4.1. Since the 

biases obtained add and no elimination of biases can be performed, the 

estimated Gini coefficient always has a negative bias.  

 

Figure 2.4.1  A sketch showing the bias in the trapezium rule. 

Compared to the trapezium rule, Simpson ś rule gives more accurate 

approximations. As stressed above, Simpson ś rule demands two restrictions: 

the number of subintervals has to be even and the subintervals have to be of 

equal length. In order to obtain Simpson ś rule, the subintervals should be 

grouped two by two. Each doubled subinterval has three L values. The area 

under this part of the Lorenz curve is estimated such that a parabola obtaining 

the same L values approximates the Lorenz curve. Simpson ś rule obviously 

yields exact results for quadratic curves but, in general, this also holds for cubic 

curves. Assuming 2n subintervals, the approximate area formula for a doubled 

interval is  

Trapezium 
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 214
3

1~
  iiii LLL

n
I , 

the total sum is  

  


 
4

0

22122 4
3

1~

i

iii LLL
n

I  (2.4.2) 

and IGS

~
21 .  

Golden (2008) gave a detailed account of an alternative method based on 

Lorenz curves with quintiles. He considered p and L in percentages. The layout 

of the method is presented in Table 2.4.1. First he determined where the 

cumulative income shortfall is greatest and defined Z as the largest quintile 

point of the cumulative income shortfall from perfect equality divided by 100. 

In order to obtain the largest cumulative income shortfall he defined the trans-

formed variable 20
~

1  ii LL . This transformation, 20LL
~

1ii



, indicates a 

search for an interval at which 
i

L  shifts from increases faster than 
i

p  to slower 

increases. For low i ś, the transformed value ii LL 
~

. Later, there is a first i 

value such that 
ii

LL
~
 . For this value, one finds an interval for which L is 

closely parallel with the diagonal, the greatest shortfall is obtained, and one 

defines 100/)
~

20( iLiq  . The estimated Gini coefficient in percentages, 
G

G , 

is )3(50 qqGG  . When this method was applied to 621 income observations, 

Golden (2008) noted that his approach performed better than the trapezium rule, 

also stressing that his method could be applied to Lorenz curves with deciles.  

Fellman (2012a) generalized Golden ś method in the following way. If the 

Lorenz curves are given in deciles, then Golden ś transformation should be 

10
~

1  ii LL  and if the 
i

p ś are not equidistant, then one has to define 
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11

~
  iiii ppLL . Following Golden ś rule, these processes have to continue 

until ii LL 
~

. Then introduce 100/)
~

( ii Lpq   and )3(50 qqGG  . 

Table 2.4.1  A layout of a Lorenz curve with deciles. Following Golden (2008), the data 

is given in percentages. The transformed 20
~

202020  ii LL  values appear in the text.  

i 0 1 2 3 4 5 

ip  0 20 40 60 80 100 

iL  00 L  L 20L  40L  60L  80L  100100 L  

iL
~

 0
~

0 L  20

~
L  40

~
L  60

~
L  80

~
L  100

~
L  

In many empirical situations, the income distribution )x(F  is given in 

grouped tables. If the mean of or total incomes in the groups are known, the 

cumulative distribution can be considered as a Lorenz curve, but the subinter-

vals are usually not of constant length. The trapezium rule holds, but it still 

yields a positive bias for the area and negative bias for the Gini coefficient.  

An obviously better alternative is to approximate the Lorenz curve with 

Lagrange ś interpolation (Berrut & Trefethen, 2004). Lagrange polynomials of 

the second degree can be considered as a generalisation of Simpson ś rule and 

do not demand subintervals of equal length, but the number of subintervals 

should still be even. The polynomials obtained have to be integrated in order to 

yield approximate areas and Gini coefficients. If the subintervals are of the 

same length, the Lagrange polynomial method is identical with Simpson ś rule. 

Fellman (2012a) applied the Lagrange interpolation of second degree. 

However, he had to assume an even number of subintervals. Now the Lagrange 

polynomial is 



78         Mathematical Analysis of Distribution and Redistribution of Income 
 

http://www.sciencepublishinggroup.com 








































 



))((

))((

))((

))((

))((

))((
)(

2221222

212
22

2122212

222
12

1

0 222122

2212
2

iiii

ii
i

iiii

ii
i

n

i iiii

ii
i

pppp

pppp
L

pppp

pppp
L

pppp

pppp
LpL

 (2.4.3) 

This approximate polynomial must be integrated in order to obtain an 

estimate of the area under the Lorenz curve.  

The comparison between different estimation methods is in general difficult 

to perform. These difficulties are mainly caused by the fact that the true Gini 

coefficient is unknown, but sometimes, where more detailed studies have 

already resulted in very accurate estimates, the comparisons are possible. Some 

authors (e.g., Gastwirth, 1972; Mehran, 1975; McDonald & Ransom, 1981; 

Rigo, 1985; Giorgi & Pallini, 1987) have introduced interval estimates, but 

these are often rather broad and it is still difficult to identify the best method. 

Such comparison problems are eliminated if the numerical estimations are 

applied to theoretical distributions.  

Needleman (1978) stated that as the Lorenz curve is convex, the trapezium 

approximation is always greater than the actual area under the curve, so that the 

estimate based on this approximation is always less than the actual value of the 

coefficient. Furthermore, he noted that most authors using the trapezium 

approximation indicate that they are aware of the bias involved, but either 

assume the error so small as to be insignificant, or else use a large number of 

intervals in the belief, usually justified, that the bias will then be negligible. 

McDonald and Ransom (1981) introduced lower and upper bounds of the Gini 

estimates. In order to estimate the bounds of the Gini coefficient estimates, they 

considered the income to have a Γ density, that is, 
)(

)(
1



 




 yey
yg  with 
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corresponding 




)1(

?(




G  and  /  and applied Monte Carlo 

methods.  

In order to perform comparisons between the estimated and theoretical Gini 

coefficients Fellman (2012a) analysed classes of theoretical Lorenz curves with 

varying Gini coefficients. He compared Gini estimates for the Pareto 

distributions. If one defines the Pareto distribution as  xxF 1)( , where 

1x   and 1 . Then the frequency function is 1x)x(f   , the mean is 

1




 , the quantiles are 



 1

1

1














p
xp , the Lorenz curve 

  

 1

11)(


 ppL  and the Gini coefficient 
12

1





G . Fellman considered 

0.55.1  , then the Gini coefficient satisfies the inequalities 

500.0111.0 G . This G interval corresponds to the most common Gini 

coefficients. Fellman’s results appear in Table 2.4.2 and Figure 2.4.2. Note that 

Simpson ś and Golden ś rules yield similar accuracy, but the trapezium rule 

shows the largest errors for all levels of Gini coefficients. This theoretical study 

indicates that Golden ś rule is not uniformly better than the trapezium rule. 

Gastwirth (1972) presents interval estimations of the Gini coefficient. The 

exact Gini estimate on Current Population Surveys (CPS) income data for 1968 

was computed by Tepping, his result being 0.4014. Gastwirth ś Table 2 shows 

Tepping ś data grouped into a 10 subgroup Lorenz curve. He compares his Gini 

interval estimates with Tepping ś finding. Gastwirth (1972) considers a 

minimum of restrictive conditions, obtaining the interval 4083.03883.0 G . 

Mehran (1975) suggests an alternative estimation method, obtaining the interval 

estimate 4087.0G3883.0  . The grouping limits are not equidistant and one 
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cannot apply Simpson ś rule. Applying the trapezium rule yields 0.3883 and the 

negative bias is apparent. The Lagrange rule yields 0.4033 and the modification 

of the Golden rule yields the rather inaccurate estimate 0.3740.  

Table 2.4.2  (Fellman, 2012a). The estimation of the Gini coefficient applied to the 

Lorenz curve for the Pareto distributions. Note that the estimated Gini coefficients 

according to the trapezium rule are inaccurate and show negative biases. Simpson ś 

and Golden ś rules yield similar accuracy, but Golden is best for large Gini values. 

  
Estimates 

  
Error 

 
G Trapezium Simpson Golden Trapezium Simpson Golden 

11.11 10.858 11.044 11.104 -0.253 -0.067 -0.008 

12.50 12.206 12.419 12.529 -0.294 -0.081 0.029 

14.29 13.935 14.185 14.370 -0.350 -0.101 0.084 

16.67 16.235 16.535 16.833 -0.431 -0.132 0.166 

20.00 19.442 19.816 20.291 -0.558 -0.184 0.291 

25.00 24.223 24.717 25.476 -0.777 -0.283 0.476 

33.33 32.102 32.820 34.026 -1.232 -0.513 0.693 

50.00 47.481 48.730 50.317 -2.519 -1.270 0.317 

 

Figure 2.4.2  Estimation errors in the Gini coefficients estimated by the trapezium, 

Simpson, and Golden rules. Note that Simpson ś and Golden ś rules yield similar 

accuracy, but the trapezium rule shows the largest errors (Fellman, 2012a). 
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Lorenzen (1980) presents information about the total distribution of income for 

households in Germany in 1973 in his Tabelle 2. The Gini coefficient calculated 

by Lorenzen is based on data pooled in his Tabelle 3, which yielded 0.30. Using 

Lorenzen ś Tabelle 3, Fellman performed a comparison of the estimates obtained 

based on the trapezium rule and the Lagrange rule. The available empirical data 

cannot yield a comparison of the accuracy of the two methods. The estimated 

Gini coefficient according to the trapezium rule shows negative biases compared 

to Lorenzen ś result, being 0.2920. The Lagrange interpolation yields the estimate 

0.3486 and the modified Golden method 0.3002.  

This study indicates that the biased trapezium rule is almost always inferior 

and shows negative biases. No method however is uniformly optimal. Note that 

Simpson ś and Golden ś rules yield similar accuracy. Golden ś method is 

usually of medium quality, but its accuracy fluctuates.  
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In Chapter one and Chapter two, we have introduced the central properties of 

income distributions and the methods how to analyse income distributions and 

redistributions. We have also given example how to estimate distributions and 

concentration measures in empirical data. In this chapter we apply the methods 

on the effects of taxation policies. 

3.1  A Class of Tax Policies 

Following Fellman (2001) we consider a pre-tax income X, assumed given, 

with the distribution function )(xF
X

, density function )(xf
X

, mean 
X

 , 

Lorenz curve )( pL
X

 and the Gini coefficient 
X

G . Now, we consider a class of 

tax policies characterized by the transformation )(XuY   where )(u  is non-

negative, monotone increasing and continuous with the properties  

 U: 














XXuE

xu

xxu

))((

1)(

)(

. (3.1.1) 

The function )(xu  is the post-tax income associated with the pre-tax income 

x and τ is the mean tax. The monotonicity of )(xu  indicates that the internal 

order of the incomes remains the same after taxation. The taxation reduces the 

income and consequently, the first condition in (3.1.1) is obvious. The second 

guarantees that also the taxes increase monotonically with increasing initial 

income x, and the third indicates that the different tax policies yield the same 

total amount of taxes when applied to the given pre-tax incomes. In order to 

give a more realistic definition of the class of tax policies, Fellman (2001) 

introduced the restriction 1)(  xu . Earlier in Fellman (1995) and in Fellman et 

al. (1996, 1999), this restriction was not assumed. Therefore, some of the results 

in those studies differ slightly from the results in later papers and in this study.
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The class U of tax policies contains both progressive and non-progressive 

policies and is therefore an adaptive tool for inequality and welfare studies. The 

policies in U do not have a Lorenz ordering. Accordingly, the Lorenz curves 

corresponding to post-tax distributions generated by members of U may 

intersect.  

Assume set of arbitrary policies )(xu
i

, ( ki ,...,1 ), belonging to U. 

Consider their linear combination 

 )()(
1

xuxu i

k

i

i


   0
i

 ( ki ,...,1 , ) 1
1




K

i

i
 .  (3.1.2) 

We obtain  

 xxxxuxu
k

i

i

k

i

ii

k

i

i  
 111

)()(  , (3.1.3) 
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and  
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Hence, )(xu  belongs to U and U is a convex class of policies. 

Denote by )( pL
i

 the Lorenz curves, 
i

G  the Gini coefficients corresponding 

to the policies )(xu
i

 ( ki ,...,1 ). From the fact that integration is a linear 

operator we obtain the Lorenz curve )( pL  and the Gini coefficient G  
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and  

 i
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1
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Conversely, if we consider a Lorenz curve satisfying (3.1.6) and (3.1.7) it 

corresponds to a policy of the form (3.1.2) and belongs to U. Hence, the classes of 

Lorenz curves and of Gini coefficients are also convex and we can summarize all 

results in: 

Theorem 3.1.1. The class U and the classes of Lorenz curves and of Gini 

coefficients corresponding to the policies in U are convex. 

Now we study the class (3.1.1) of policies in more detail. First we analyse a 

policy which serves as a benchmark for the members of policies. Consider 

 















00

0

0 )(

axa

axx

xu
, (3.1.8) 

that means that for incomes 
0

ax   there is no tax and for 
0

ax   the tax is 

0
ax   so that the post-tax is constantly equal to 

0
a .  

We prove that there is a unique value 
0

a  such that     XXuE )(0  and 

consequently, the corresponding policy belongs to U. For an arbitrary a we 

obtain  

   


a

X

a

X
dxxfadxxfxXuE )()()(

0

0  
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    )(1)( aFaaFL
XXXX

  (3.1.9) 

The function  

    )(1)()( aFaaFLae XXXX    (3.1.10) 

starts from the value 0)0( e  and has the derivative 

 0)(1)()(1)()(  aFaafaFaf
a

ae XXXX

X

X


 . (3.1.11) 

From the fact that the mean X  exists, it follows that  

     
XX

a
XXX

aa

aFaaFLae  


)(1lim)(limlim  

because  

 
XXXX

a

aFL  


)(lim  

and  

  









a

X
a

a

X
a

X
a

dxxfadxxfaaFa )(lim)(lim)(1lim0 0)(lim  



a

X
a

dxxfx . 

Hence, the function )(ae  is continuous and monotone increasing from 

0)0( e  to 
X

e )(  and consequently, there exists a unique 
0

a  such that 

   
X

aeXuE )()(
00

. This value 
0

a  satisfies the inequality  
X

a
0

 

(with equality if and only if   0
0
aF

X
). For this value of 

0
a  the tax policy 

)(
0

xu  belongs to U.  

Define )(
00

aFp
X

 . For 
0

pp  ,  
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)()(
1

)(
0

0
pLdxxfxpL

X

X

X

x

X

X

p





 



   

and for 
0

pp    







 
p

p

x

x

X

X

X

X

X dxxfapLpL

0

)(
1

)()(
00




 

0

0

0
)( pp

a
pL

X

X

X

X 



 


. 

Hence, the corresponding Lorenz curve is 

 





















)()(

)(

)(L 

0
0

0

0

pp
a

pL

pL

p

X

X

X

X

X

X

X









0

0

 p 

 p 

p

p





. (3.1.12) 

By definition given above, 
00

)( paF
X

  and 
00

ax
p
 . In the point 

0
pp   

the derivative to the left is  











 XX

p

X

X

X ax
pL 0

0´
0)(  

and to the right is  

 X

a0
. 

Therefore the derivative exists also in the point 
0

pp   and the Lorenz curve 

(3.1.12) has a continuous derivative within the interval (0, 1). 

Consider an arbitrary transformation )(xu  with the properties (3.1.1). Then 

according to Figure 3.1.1, xxuxu  )()(
0

 for 
0

ax  .  
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From the fact that the function )(xu  is an increasing function it follows that 

there exists a unique 
0

ax   such that 0)( axu   for  xx  and 
0

)( axu   for 

 xx . Hence, 

)()(
0

xuxu   for  xx  and )()(
0

xuxu   for  xx . 

The difference  

   




px

X

X

dxxfxuxupD

0

0 )()()(
1

)(


, (3.1.13) 

where pxF pX )( , increases monotonically from zero to a maximum for 

)(  xFp
X

, where after it decreases monotonically to zero. Hence, )(
0

xu  

generates a post-tax income distribution that Lorenz dominates all tax policies 

of the given class U (Fellman, 1995, 2001; Fellman et al., 1996, 1999). 

Furthermore, it also Lorenz dominate the flat tax policy xxu
X

X



 
)(ˆ , whose 

mean is  X  and Lorenz curve )( pLX . Consequently, )()(0 pLpL X  and 

)(0 xu  Lorenz dominates the initial income variable X. 



Chapter 3  Taxation          93 
 

http://www.sciencepublishinggroup.com 

 

Figure 3.1.1  Sketches of the two extreme tax policies: )(XuY o  and )(XuY  , and 

an arbitrary policy )(xuY   (after Fellman, 2001, 2002, 2014). 

Let 
0

G  be the Gini coefficient corresponding to )(0 xu . We obtain  

 

)1()1(21

)(21)(21

1

0

1

0

00

X

X

XX

X

X

X

GGG

dppLdppLG









 








. (3.1.14) 

The policy (3.1.8) Lorenz dominates the class U and therefore we obtain that 

the lower bound  X

X

X GG 


 1



 in (3.1.14) is a lower bound of the Gini 

coefficients of all policies in U. 

Consider another extreme policy 

 )x(u =

0  < 

    

x c

x c x c



 




  

. (3.1.15) 

Sketches of the policies 

Y=u(x) 

c0 a* 

Y=u o (x) 

a0 

Y=u  (x) 

C 
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It takes everything from the poorest whose income is below 


c  and a 

constant amount 


c  from the riches whose income is greater than c . A sketch 

of )(xu


 is also presented in Figure 3.1.1. Below we prove that there exists a 

value 


c  such that )(xu


 satisfies the condition (3.1.1) and belongs to U. For 

an arbitrary c we obtain  

 

))(1())((1(

)()()()(

)()(

)()()()())((

00

0

cFccFL

dxxcfdxxxfdxxxfdxxxf

dxxcfdxxxf

dxxfcxdxxfxuXuE

XXXX

c

X

c

X

c

X

c

X

c

X

c

X

X

c

X

























. (3.1.16) 

Consider the function    )(1)((1)( cFccFLce XXXX   . From the fact 

that X  exists then Xe )0(  and  

       


)(1lim)((1lim)(lim cFccFLce
X

c
XXX

cc
  

 )(1lim cFc
X

c


 









c

X
c

c

X
c

dxxfxdxxfc 0)(lim)(lim . 

Consider the derivative )(ce . Now 

    0)(1)()(1)()(  cFccfcFcf
c

ce XXXX

X

X


  

and )(ce  is monotone decreasing from X  to zero. Hence, there exists a unique 

value c  such that 

     
 XXXXX

cFccFLce )(1)((1)(  
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and the policy (3.1.15) belongs to U.  

Let   rcFX )(  and we get the condition  

     
 XXX

rcrLce 1)(1)(  

or equivalently  

    


rcrL
XX

1)( . (3.1.17) 

The corresponding Lorenz curve is  

  

























 rp
rpc

rLpL

rp

pL

X

XX

X

X



 )(
)()(

0

)( . 3.1.18) 

This Lorenz curve is continuous and has a derivative in the whole interval 

 1,0  because in the point 


 rp  the derivative to the left is zero and to the 

right is 0











XXX

X cc
. Figure 3.1.1 gives examples of the extreme 

policies )(0 XuY   and )(XuY  , and an arbitrary policy )(xuY  . 

A sketch of the Lorenz curves )( pLX , )(0 pL , and )( pL


 is given in Figure 

3.1.2. 
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0
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0.8

1

0.0 0.2 0.4 0.6 0.8 1.0  

Figure 3.1.2  The region between the extreme Lorenz curves is the region of  

attainable Lorenz curves (Fellman, 2001, 2014). 

We can prove (Fellman, 2001). 

Theorem 3.1.2. The Lorenz curve )( pL  is inferior to all Lorenz curves 

corresponding to the class U.  

Proof. Consider an arbitrary policy )(xu  in the class U. For 


 cx , we get 

)()( xuxu


 . As a consequence of the condition 1)(  xu  the curve )(xu  

crosses )(xu


 in only one point (say) 


 cc
0

 and for large x values 

)()( xuxu  . Hence, )()( xuxu   for 
0

cx   and )()( xuxu


  for 
0

cx  . 

Furthermore,  

  


 XXX
dxxfxudxxfxu

00

)()()()( . 
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The difference  

  


px

X
dxxfxuxupD

0

)()()()(  

increases monotonically from 0 to a maximum   
0

0

)()()(

c

X dxxfxuxu  for 

0cxp   whereupon it decreases monotonically to 0 for px . This 

behaviour proves the theorem.  

The extreme Lorenz curves )(L 0 p  and )( pL define a closed region of 

attainable Lorenz curves (c.f. Figure 3.1.2). 

Now we evaluate the corresponding Gini coefficient G . Consider the 

function  

    


 





 rp
c

rLpLpL
X

XX

X

X
m




)()()(  (3.1.19) 

For 


 rp , 0)( pLm  and for 


 rp  )()( pLpLm  . Hence 

)()( pLpL m  for all  1,0 p . If we use (3.1.17), we get 

  





 




2
1)(2)1(1 r

c
rLG

X

XX

X

X




 

   



















 

X

X
X

XX

X
X

G
G

cG
G

11
 . 

In fact, this upper bound 
 










X

X
X

G
G

1
 is the same as the bound given in 

Fellman (1995). There the bound was stricter, since it was obtained without the 

derivative restriction in (3.1.1).  
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As a consequence of the formula (3.1.14) and Theorem 3.1.2, the Gini 

coefficient 
 










X

X
X

G
G

1
 is the maximum and  X

X

X GG 


 1



 is the 

minimum of the Gini coefficients for the class U. Hence we obtain for every 

policy )(xu  the inequalities 

 
   



















X

X

Xu

X

X

X

G
GG

G
G

1
 

1
. (3.1.20) 

For the generalized Gini coefficient,  




1

0

2 )()1()1(1)( dppLpG   

proposed by Yitzhaki (1983), Fellman (2001) obtained a similar formula 

 
   





















X

X

Xu

X

X

X

G
GG

G
G

)(1
)()( 

)(1
)( . (3.1.21) 

For 2  the formula (3.1.21) is identical with (3.1.20).  

Consider the welfare index  GW  1  developed by Sen (1973) and later 

discussed by Lambert (2001, Chapter 5). For this index, Fellman (2001) 

obtained the simple inequality formula 

 XuX
WWW  2 . (3.1.22) 

From the deduction of the bounds in (3.1.20), (3.1.21) and (3.1.22), it follows 

that the formulae hold for arbitrary pre-tax income distributions. For a specific 

pre-tax income distribution, these bounds can be sharpened. This can be ex-

plained in the following way. Let us consider the lower bound in (3.1.20). For 

all pre-tax income distributions, the Lorenz curve )(
0

pLu  has a linear part, 
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which starts from 
0

pp  and which corresponds to the tax-paying part of the 

population (c.f. formula (3.1.8) and Figure 3.1.2). The accuracy of the lower 

bound depends on this linear part. The value of 01 p  indicates the proportion 

of taxpayers in the population and the accuracy of the bound increases as 
0

1 p  

decreases. Hence, the lower bound is accurate when there are very few but very 

high-income taxpayers.  

Now we consider the upper bound in (3.1.20). The Lorenz curve 0)(  pL  

for  rp and this part of the Lorenz curve influences the accuracy (c.f. formula 

(3.1.18) and Figure 3.1.2). For small values of 


c  and 


r we obtain good 

accuracy. This is the case when the tax-paying ability of the low-income 

individuals is good, i.e. they are not extremely poor.  

The strength of the obtained bounds is that they are independent of the 

distribution )(xFX  and depend only on the basic quantities XXG ,  and  . In 

addition, the formulae obtained, are simple functions of these quantities. 

Furthermore, we observe that if 0  then both the upper and lower bounds in 

(3.1.19), (3.1.20) and (3.1.21) converge towards XG  )(XG  and 
X

W , respec-

tively, indicating that the approximations presented have not introduced any 

―bias‖. 

We have observed that U contains policies that increase and decrease 

inequality. Therefore, the intervals given for the indices are wide and the 

obtained bounds cannot be used as approximations of the indices of a specific 

policy in U. The central role of these intervals is that they define limits for 

attainable index values and consequently give indications of the redistributive 

power of the class U.  
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Let 
0

G  be the Gini coefficient of the policy (3.1.8) and 


G  be the Gini 

coefficient of the policy (3.1.15). Obviously, GGGG
UU

maxmin 0   . Now 

we prove that the set of Gini coefficients which corresponds to the class (3.1.1) 

is compact, that is: 

Theorem 3.1.3. There is a member of the class U with a prescribed Gini 

coefficient   GGG ,
~

0 . 

Proof. Let the prescribed Gini coefficient be   GGG ,
~

0 . Construct a 

member of the class U as a linear combination of (3.1.8) and (3.1.15). We get 

 GGG )1(
~

0   and the prescribed value of the Gini coefficient is 

obtained for 

 
0

0

~
~

GG

GG








 . (3.1.23) 

Remark. Theorem 3.1.3 says that there exists at least one member of the 

class U that results in a post-tax income distribution with a prescribed Gini 

coefficient within the closed interval  GG ,0 . In general, this policy is not 

unique, but the extreme coefficients 
0

G  and 


G  are attainable only by the 

extreme policies. 

One can also prove the analogous theorem: 

Theorem 3.1.4. There is a member of the class U whose Lorenz curve 

satisfies the condition, lpLu

~
)~(  where  )~(),~(

~
0 pLpLl  . 
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Proof. The solution can be constructed by a linear combination of the 

policies (3.1.8) and (3.1.15). The prescribed condition is obtained for 

)~()1()~(
~

0 pLpLl     and  

 
)~()~(

)~(
~

~

0

0

pLpL

pLl








 . (3.1.24) 

Every point within the closed region, limited by the Lorenz curves )(0 pL  

and )( pL , is attainable by a Lorenz curve corresponding to a member of the 

class U. This means that there exists a policy that gives a post-tax income 

distribution such that the lowest proportion p~  of income receivers receives 

exactly the proportion l
~

 of the total amount of post-tax income. Within the 

class U, the solution is not necessarily unique.  

Consider the Lorenz curve )( pLX  and the Lorenz curve )( pLu , for an 

arbitrary member of the class U. According to the general theory, we have 

X

p

X

x
pL


 )(  and 

 


X

p

u

y
pL )( . Now, )( pp xuy   and, hence, pp xy   and 

we obtain 

 










X

X

X

u

pL

pL

)(

)(
. (3.1.25) 

This is a necessary restriction on feasible Lorenz curves for members of the 

class U. In general, there may be Lorenz curves between the extreme ones that 

do not correspond to policies in the class U. The inequality (3.1.25) indicates 

that the Lorenz curve for the transformed variables cannot differ markedly from 

the Lorenz curve of X. This is especially notable for small values of  X / . 

For the extreme policies (3.1.8) and (3.1.15) equality in (3.1.25) is obtained for 
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the sub intervals  00 pp   and  1 pr , respectively. These properties 

stress the optimality of the extreme policies. 

3.2  Attainable Lorenz Curves 

In this Section we present necessary and sufficient conditions under which a 

given Lorenz curve can be obtained by a member of the class U. These 

conditions are related to stochastic dominance of first order. Maasoumi and 

Heshmati (2000) presented stochastic dominance of first, second and third order 

and how they can be defined by alternative equivalent conditions.  

Let V and W be non-negative stochastic variables having the distributions 

)(vFV  and )(wFW , the means V  and W  and the Lorenz curves )( pLV  and 

)( pLW , respectively. Using our notations the Maasoumi and Heshmati 

definition of stochastic dominance of first order is: 

Definition 3.2.1. The variable V First Order Stochastic Dominates W if and 

only if any one of the following equivalent conditions holds: 

i.    )()( WgEVgE   for all increasing functions g. 

ii. )()( vFvF
WV

  for all v. 

iii. pp
wv   for all 10  p . 

In this study of income distributions we restrict our investigations on non-

negative continuous stochastic variables. For these the Lorenz curves are 

differentiable and we can prove the following lemma. 
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Lemma 3.2.1. Let V and W be continuous non-negative stochastic variables 

having the distributions )(vFV  and )(wFW , the means V  and W  and the 

Lorenz curves )( pLV  and )( pLW , respectively, then the conditions: 

i. V first order stochastic dominates W. 

ii. )()( vFvF WV   for all v. 

iii. 
pp

wv   for all p ( 10  p ). 

iv. 
W

V

V

W

pL

pL










)(

)(
 for all p ( 10  p ). 

are equivalent.  

Proof. The equivalence between (i), (ii) and (iii) is given in Definition 3.2.1. 

Now, we only have to prove the equivalence between (iv) and (iii) (say). The 

connection between (iii) and (iv) are the formulae 

V

p

V

v
pL


 )(  and 

W

p

W

w
pL


 )(  

a) Assume that (iii) holds 

Now, 

)(

)(
1

pL

pL

v

w

VV

WW

p

p








, 

W

V

V

W

pL

pL










)(

)(
 

and (iv) is obtained. 

b) Assume that (iv) holds. Now 
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1

)(

)(





























V

p

W

p

V

W

W

V
vw

pL

pL




, 

p

p

v

w
1  , pp wv   

and the proof is completed.  

Remark. The condition (iv) in Lemma 3.2.1, being equivalent with (i), (ii) 

and (iii), indicates that we have obtained a new criterion for stochastic 

dominance of first order between two non-negative stochastic variables. 

In Section 3.1 formula (3.1.25) we have noted that stochastic dominance of 

first order is a necessary condition that the transformed distribution is a post-tax 

income distribution corresponding to a policy of the class U. In the following 

we obtain sufficient conditions.  

At first we consider the class  

 U*: 












XXuE

xxu

))((

)(

 (3.2.1) 

This class, presented in Fellman (1995) and in Fellman et al. (1996, 1999), is 

defined as the initial class U without the restriction 

 1)(  xu  (3.2.2) 

and consequently, U U*. Now we prove  

Theorem 3.2.1. (Fellman, 2002, 2014) Consider a differentiable Lorenz 

curve )( pL  and a stochastic variable Y with the corresponding distribution 

)(yFY  with the mean )(  X . Then the necessary and sufficient conditions 



Chapter 3  Taxation          105 
 

http://www.sciencepublishinggroup.com 

that the Lorenz curve )( pL  is an attainable Lorenz curve of a member of U*, 

)(yFY  being the corresponding distribution and ))(()()( xFLxu XX
   

being the corresponding transformation, is that one of the following equivalent 

conditions holds: 

i. X first order stochastic dominates Y. 

ii. )()( xFxF
YX

  for all x. 

iii. 
pp

xy   for all p ( 10  p ) or. 

iv. 











X

X

X pL

pL

)(

)(
 for all p ( 10  p ). 

Proof. Assume that the presumptive post tax income distribution is )(yF
Y

 

( )(yf
Y

) with the mean  
X

. We introduce the quantiles px  and py , where 

pxF
pX
)(  and pyF pY )( . These quantiles can also be defined as 

)(1 pFx
Xp

  and )(1 pFy Yp
 . In Section 3.1 we noted that 

 pp
xy   for all p ( 10  p ) (3.2.3) 

and this condition still holds for the class U*. Consequently it is a necessary 

condition for )(yFY  to be an attainable post-tax income distribution. From 

(3.2.3) it follows that  

)()()(
pYpYpX

xFyFpxF   for all p ( 10  p ). 

The condition 

 )()( xFxF
YX

  for all x (3.2.4) 
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being equivalent with (3.2.3) is also a necessary condition that the post-tax 

income distribution )(yFY  corresponds to a tax policy belonging to U*. From 

formula (3.2.4) we obtain 

 xxFFxFF
YYXY

  ))(())(( 11  for all x. (3.2.5) 

In the following we prove that the condition that the distribution )(yFY  

satisfies (3.2.5) is sufficient, that is, )(yFY  is a post-tax income distribution for 

a member of the class U*. Consequently, the condition (3.2.4), being equivalent, 

is also sufficient. Consider a distribution )(yFY  with mean  X  satisfying 

(3.2.3). According to the definition of a distribution function we have 

 )()( yFyYP
Y

 . (3.2.6) 

The cumulative distribution function )(yFY  is monotone increasing and 

 )())()(( yFyFYFP
YYY

 . (3.2.7) 

If )(YFZ Y  and )(yFz Y , then )(1 ZFY Y
 , )(1 zFy Y

  and  

 zzZP  )( . (3.2.8) 

Consider the initial distribution )(xFX . Then 

 ))()(()( 11 zFZFPzZPz
XX

  . (3.2.9) 

Let )(1 ZFX X
  and )(1 zFx X

  then )(XFZ X  and )(xFz X .  
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Now, 

 )())(()( 11 xuxFFzFy
XYY

   (say). (3.2.10) 

Hence )(xu  is continuous and monotone increasing. In addition, from (3.2.5) 

follows that )(xu  satisfies the condition  

 xxu )(  (3.2.11) 

and )(xu  belongs to U* and the distribution )(yF
Y

 corresponds to a policy 

belonging to the class U* and the sufficiency is obtained. 

Let us now consider Lorenz curves. First we give the conditions that a 

specific Lorenz curve (and the corresponding distribution )(yF
Y

) can be 

attained by a member of the class U*. Let us consider an arbitrary Lorenz curve 

)( pL  with the conditions 

i. )( pL  has a continuous derivative of the first order ( )( pL  ). 

ii. 0)()1(lim
1




pLp
p

. 

These conditions imply that the corresponding distribution )(yFY = )(


y
M , 

where )(M  is the inverse function to )( pL  , is continuous and has a finite 

mean µ. When the Lorenz curve )( pL  and the mean µ are given then the 

corresponding income distribution is unique (Fellman, 1976, 1980).  

Consider a Lorenz curve )( pL  and the corresponding distribution )(yFY  

with the mean  X . We have  
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 


X

py
pL )(  

and  

))(()()()()(1

pXXXYp
xFLpLpFy    . 

From these formulae it follows that ))(()()( xFLxu XX
  . Hence, the 

condition  

 xxFLxu
XX

 ))(()()(   (3.2.12) 

is a necessary condition for attainability. On the other hand let us assume that 

(3.2.12) holds. Let )(yFY  be the distribution, which corresponds to )( pL  and 

has the mean  X . Then 

ppYXXp
yyFLpLx  ))(()()()(  , 

and 

 pp
xy   for all p ( 10  p ). (3.2.13) 

Consequently, the condition (3.2.12) is also sufficient and the theorem is 

proved.  

Now we add the restriction 1)(  xu  and consider the initial class U of 

policies. For this class the necessary and sufficient condition is given in  

Theorem 3.2.2. Consider a twice differentiable Lorenz curve )( pL  and a 

stochastic variable Y with the corresponding distribution )(yFY  with the mean 

)(  X  and define ))(()( 1 xFFxu XY
 . Then necessary and sufficient 
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condition that the Lorenz curve )( pL  is an attainable Lorenz curve of a 

member of U, )(yFY  being the corresponding distribution and )(xu  being the 

corresponding transformation, is that one of the following equivalent conditions 

holds: 

i. 











X

X

X pL

pL

)(

)(
 for all p ( 10  p ) or equivalently,  

ii. )()( yfxf YX   where )())((1 xuxFFy XY   . 

Proof. If we assume that )( pL  has the second derivative )( pL   we can add 

the restriction 1)(  xu  into (3.2.1) in order to obtain the class 3.1.1. We have 

the derivatives of first order 
 


X

py
pL )(  and 

X

p

X

x
pL


 )( . According to 

the formula (1.3.2) the derivatives of the second order are 

)()(

1
)(

pYX yf
pL

 
  and 

)(

1
)(

pXX

X
xf

pL


 .  

Note that if we, according to (3.2.10), define )())((1 xuxFFy XY    then we 

obtain 

 1
))(((

)(
)(

1


 xFFf

xf
xu

XYY

X
. (3.2.14) 

and 

 )()( yfxf
YX

  where )())((1 xuxFFy
XY

 
 (3.2.15) 

Hence, for every p ( 10  p ) we have  

 )()(
pYpX

yfxf  . (3.2.16) 
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Consequently, (3.2.16) can be written  

 











X

X

X
pL

pL

)(

)(
. (3.2.17) 

This is a necessary condition that the transformation )())((1 xuxFFy XY    

in (3.2.14) belongs to the class U. We can reverse the steps from (3.2.17) to 

(3.2.14) and consequently, (3.2.17) is also sufficient and the proof is completed.  

If (3.2.17) is integrated we obtain 

 )()()( pLpL
XXX

  , (3.2.18) 

or alternatively 

 
)()(

)(












X

X

X
pL

pL
 (3.2.19) 

which is identical with the condition (3.1.25). The integration step from (3.2.17) 

to (3.2.19) is not reversible so the condition (3.2.19) is only necessary for the 

class U given in (3.1.1) but, as proved above, necessary and sufficient for the 

class U* given in (3.2.1). This difference can be explained so that there can 

exist policies belonging to the class U* but not belonging to U. Explicitly, such 

policies do not satisfy the condition 1)(  xu . 

The condition (iv) implies after integrations that 

 )()()( pLpL XXX   . (3.2.20) 

indicating Generalized Lorenz Dominance (GLD). The integration step from 

)(
)(

)( pLpL X

X

X 






 given in (iv) in Theorem 3.2.1 to the condition (3.2.20) 
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is not reversible. Consequently, GLD is only a necessary condition, or otherwise 

expressed, stochastic dominance implies GLD (cf. Lambert 2001 p. 49).  

3.3  Classes of Non-differentiable Tax Policies 

The transformed variable )(XuY   is the income after the taxation (Fellman, 

2001, 2002; Fellman et al., 1996, 1999). In order to obtain a realistic class of 

policies we included in Fellman (2001, 2002) the additional restriction 1)(  xu . 

This condition indicates that the tax paid is an increasing function of the income 

x. In order to allow that the function )(xu  is not differentiable everywhere, we 

replace in this study the derivative restriction by the more general condition 

xxu  )(  (Fellman, 2013). According to this restriction the function )(xu  is 

continuous and the tax is an increasing function of the income x. In fact, the 

increment in the tax is 0)(  xux . If 1)(  xu  holds then it follows that  

xxuxuxxuxu  )()()()(  , 

but the condition xxu  )(  is more general and does not imply 

differentiability. We intend to show that the assumption xxu  )(  is 

sufficient for the whole theory. 

Now, the class of tax policies is 

 U: 















X

XuE

xxu

xxu

))((

)(

)(

. (3.3.1) 

We consider the extreme policies  

 









00

0

0
)(

axa

axx
xu  (3.3.2) 
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and 

 














cxcx

cx
xu

0
)( . (3.3.3) 

The function )(
0

xu  in (3.3.2) is not differentiable in the point 
0

a  and )(xu


 

in (3.3.3) in the point 


c , but the condition xxu  )(  holds for all x. Already 

in (3.1.12) we obtained that the Lorenz curve corresponding to (3.3.2) is 

 

 






















00
0

0

0

0

)(

)(

)(

pppp
a

pL

pppL

pL

X

X

X

X

X

X

X








, (3.3.4) 

where )(
00

aFp
X

  and according to (3.1.18) the Lorenz curve corresponding 

to (3.3.3) is 

  

























 rp
rpc

rLpL

rp

pL

X

XX

X

X



 )(
)()(

0

)( , (3.3.5) 

where )(


 cFp
X

. 

The policy (3.3.2) is optimal, that is, it Lorenz dominates all the policies in 

the class U, and the policy (3.3.3) is Lorenz dominated by all policies in U 

(Fellman, 2001, 2002).  

In the following we show how the main result in Fellman (2002) can be 

obtained when we replace the restriction 1)? xu  by the more general restric-

tion xxu  )( . The function )(xu  may be piecewise differentiable as the 

transformations (3.3.2) and (3.3.3). We consider post-tax income distributions 

with the mean  X . Without the restriction xxu  )( , the necessary and 
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sufficient condition that a given Lorenz curve )( pL  ( )(yFY ) corresponds to a 

member of the class U is that the initial distribution )(xF
X

 stochastically domi-

nates )(yF
Y

. The inclusion of the restriction xxu  )(  results that the 

stochastic dominance is only necessary, that is the transformed distribution 

)(yF
Y

 must satisfy additional conditions. 

Assume a given differentiable Lorenz curve )( pL  with a continuous 

derivative. These conditions can be assumed because the corresponding 

transformation )(xu  has to be continuous satisfying the condition xxu  )( . 

Starting from )( pL , the connection between )( pL  and the post-tax distribution 

)(yF
Y

 with the mean  
X

 is that 














X

Y

y
MyF )( , where  M  is the 

inverse function of )( pL  . The corresponding transformation is 

  ))(()( xFLyxu
XX

  . The condition xxu  )(  can be written 

     
    )(

))(()(

pLppL

xFLxxFLxu

X

XXX








 

where )(xFp
X

  and )( xxFpp
X

 . On the other hand, we can write  

    
pppX

yy)p(L)pp(L)x(u 


 , 

where p
y  and pp

y
  are defined by )(

pY
yFp  , )(

ppY
yFpp


 .  

If we assume that )(xu  is piecewise differentiable, then )( pL   and )(yF
Y

 

are piecewise differentiable.  

If we assume that the density functions )(xf
X

 and )(yfY  exist, we obtain  
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xfxFxxFp
XXX

 )()()(  , 

where xxx   and  

 )()()(

))(()()(

ppY

pppYpYppY

xuxxuf

yyfyFyFp



 




 

where )()( yFyf
YY
  and ppp yy  .  

Consequently,  

)()(
pXpY

xFyFp   

and  

 )(1 xFFy
XYp

 . 

From )()()( xufpxf
YX

   and from the condition xxu  )(  it 

follows that  

xfxufxf
YYX

 )()()()(   

and consequently, 1
)(

)(






Y

X

f

f
. If we let 0x , then 0p , x and 

p
y  and we obtain 1

)(

)(


pY

X

yf

xf
. This condition can also be written )(xh  or 

1
)(

)(


yf

xf

Y

X  when )(xh . Hence, all the results in Fellman (2002) still hold, but 

the proof had to be slightly modified.  
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3.4  Discussion 

In this chapter we reconsidered the effect of variable transformations on the 

redistribution of income. The aim was to generalise the conditions considered in 

earlier papers. Particularly we were interested if we can drop the assumptions of 

continuity and differentiability of the transformations. The main result is that with 

a slight modification of the proof the additional condition 1
)(

)(


yf

xf

Y

X  is obtained.  

We have obtained that, if we demand sufficient and necessary conditions, 

theorems earlier obtained, still hold and the continuity assumption can be 

included in the general conditions. The main result is that continuity is a 

necessary condition if one pursues that the income inequality should remain or 

be reduced. 

The study of the class of tax policies indicated that the differentiability, 

earlier assumed, can be dropped but if one wants to retain the realism of the 

class the transformations should still be continuous and satisfy the restriction 

xxu  )( . The earlier results obtained and presented in Fellman (2001, 2002) 

still hold.  

Empirical applications of the optimal policies of a class of tax policies and 

the class of transfer policies considered here have been discussed in Fellman et 

al. (1996, 1999). There we developed ''optimal yardsticks'' to gauge the 

effectiveness of given real tax and transfer policies in reducing inequality. 

References 

[1] Fellman, J. (1976). The effect of transformations on Lorenz curves. Econometrica 

44:823-824. 



116         Mathematical Analysis of Distribution and Redistribution of Income 
 

http://www.sciencepublishinggroup.com 

[2] Fellman, J. (1980). Transformations and Lorenz curves. Swedish School of 

Economics and Business Administration Working Papers 48, 18 pp.  

[3] Fellman, J. (1995). Intrinsic mathematical properties of classes of income 

redistributive policies. Swedish School of Economics and Business Administration 

Working Papers, 306, 26 pp. 

[4] Fellman, J. (2001). Mathematical properties of classes of income redistributive 

policies. European Journal of Political Economy 17:195-209.  

[5] Fellman, J. (2002). The redistributive effect of tax policies. Sankhya Ser. B 64:1-11.  

[6] Fellman, J. (2013). Properties of Non-Differentiable Tax Policies. Theoretical 

Economics Letters 2013, 3, 142-145. doi:10.4236/tel.2013.33022. Published 

Online June 2013. (http://www.scirp.org/journal/tel).  

[7] Fellman, J. (2014). The properties of a class of tax policies. Advances and 

Applications in Statistics, ADAS. 39(2):125-148. 

[8] Fellman, J., Jäntti, M., Lambert, P. (1996). Optimal Tax-transfer Systems and 

Redistributive Policy: The Finnish Experience. Swedish School of Economics and 

Business Administration Working Papers 324.  

[9] Fellman, J., Jäntti, M., Lambert, P. (1999). Optimal tax-transfer systems and 

redistributive policy. Scandinavian Journal of Economics 101:115-126.  

[10] Lambert, P. J. (2001). The Distribution and Redistribution of Income: A 

Mathematical Analysis. (3rd edition) Manchester: Manchester University Press. 

xiv+313 pp.  

[11] Maasoumi, E. & Heshmati, A. (2000). Stochastic dominance amongst Swedish 

income distributions. Econometric Reviews 19:287-320.  

[12] Sen, A. (1973). On Economic Inequality. Clarendon Press, Oxford.  

[13] Yitzhaki, S. (1983). On an extension of the Gini index. International Economic 

Review 24:617-628.  

http://www.scirp.org/journal/tel


 

 

 

 

 

 

 

 

4 
 

Transferring 

 

 

 

 

 



 

 

 

 



 
 

http://www.sciencepublishinggroup.com 

In Chapter one and two, we have introduced the central properties of income 

distributions and the methods how to analyse income distributions and 

redistributions. We have also given example how to estimate distributions and 

concentration measures in empirical data. In Chapter 3 we have presented the 

effect of taxation on the income distribution and inequality. In this chapter we 

apply the theory in order to analyse the effects of transfer policies. 

4.1  The Class of Transfer Policies 

In this section we present the results of a study of a class of transfer (benefit) 

policies. Below we compare some results concerning transfer policies with our 

earlier results concerning tax policies. Consider an initial income distribution, 

defined in Chapter 3, with the distribution function )(xFX , density function 

)(xf X , mean X , Lorenz curve )( pLX , the Gini coefficient XG , generalized 

Gini coefficient )(XG  (Yitzhaki, 1983) and welfare index XW  (Sen, 1973). 

Following Fellman (1995, 2001) and Fellman et al. (1996, 1999), we consider 

the class of transfer policies characterized by the transformation )(XhY  , 

where )(h  is non-negative, monotone-increasing and continuous with the 

properties 

 H: 













X

YE

xxh

)(

)(

. (4.1.1) 

The function )(xh  is income including government cash transfers associated 

with the original income x and  is the mean transfer. The scenario pursued here 

can apply as well to an income policy; in that case )(xh  is income after an 

increase according to the policy. The monotonity of )(xh  indicates that the 

initial income order remains fixed. The first formula in (4.1.1) is obvious and 
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the second indicates that the class H of transfer policies is constrained to 

distribute a given amount of benefit ().  

The class H contains both progressive and non-progressive policies and is 

therefore an adaptive tool for inequality and welfare studies. It is necessary 

already at this stage to point out that the transformed incomes corresponding to 

the policies in H do not have a Lorenz ordering.  

We present some general results analogous to the results holding for the class 

of tax policies in Chapter 3. For details, see Fellman (1995 and 2001). Consider 

a set of arbitrary policies ),...,1(),( kixhi  , belonging to H. Following the 

analyses in Section 3.1 we obtain that the transformation  

 



k

i

ii
xhxh

1

)()(   ),...,1(0 ki
i

  



k

i

i

1

1 , (4.1.2) 

also belongs to H because 

 xxxxhxh
k

i
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 

 111

)()(  , (4.1.3) 

and 

      









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k
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XhExhE

111

)()( . (4.1.4) 

Denote the corresponding Lorenz curves by ),...,1(),( kipLi   and )( pL  

and the corresponding Gini coefficients by ),...,1(, kiGi   and G , then )(xh  

has the Lorenz curve  

 



k

i

ii pLpL
1

)()(   (4.1.5) 
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and the Gini coefficient 

 



k

i

ii
GG

1

 . (4.1.6) 

Consequently, we obtain a theorem which is analogous to Theorem 3.1.1. 

Theorem 4.1.1. (Fellman, 1995 and 2001) The class H and the classes of 

Lorenz curves and Gini coefficients corresponding to the policies in H are 

convex. 

In order to obtain the range of the policies, we consider the member 

 









bxx

bxb
xh

0

00

0 )( , (4.1.7) 

i.e. all incomes below the level 
0

b  are raised up to 
0

b  and all incomes above 

this level remain as they were. The policy (4.1.7) is an example of the minimum 

salary policy.  

For an arbitrary value of b,  

 

)())(()(

)()()(

0

0

bebFLbbF

dxxxfdxxbfxhE

XXXXX

b

X

b

X

 

 


. 

Now, Xe )0( , and we obtain 

  


))((lim)(lim)(lim bFLbbFbe
XX

b
XXX

bb
 . 

The derivative 0)()(  bFbe X  and )(be  is monotone increasing. 

Consequently, there is a unique 0b  such that     XXhE )(0 . The policy 

(4.1.7) yields an income distribution that Lorenz dominates all the income 
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distributions for the class H and has the Lorenz curve (Fellman, 1995, 2001; 

Fellman et al., 1996, 1999) 
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 (4.1.8) 

where 00 )( qbFX  .  

The Lorenz curve )(0 pL  has continuous derivative because for 0qp  , 

 
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b
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which converges towards 
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when 0qp  .  
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  )( 000 qLqb XX  and the corresponding Gini coefficient is 

 
1

0

0
)(21 dppLG

C
)(22)(21

0

00

1

0

qL
qb

dppL
X

X

X

X

X

X

X
















   

  














X

X

X

X
2G1G  

 
X

X

X
GG 


 1




. 



Chapter 4  Transferring          123 
 

http://www.sciencepublishinggroup.com 

Consequently, G0 satisfies the inequality 

 )1(0 GGG X

X

X 






. (4.1.9) 

This bound is obviously a lower bound of the Gini coefficient of all policies 

in H. 

For the transfer policies, a lowest Lorenz curve cannot be found, but we can 

attain arbitrarily closely an inferior Lorenz curve (Fellman, 2001). Consider the 

sequence of transfer policies 

 H S : 










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


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xxxxkx
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,...2,1)(
. (4.1.10) 

These policies give no benefits to the poorest part of the population ( ixx  ), 

but positive benefits to the richest part ( i
xx  ). We construct the sequence so that 

HS  H and that their Lorenz curves converge towards an inferior Lorenz curve. 

If we define )0(
i

k  so that 




ix

Xii dxxfxxk )()( , then every )(xhi  is 

continuous and monotone increasing, xxh
i

)(  and     Xi XhE )( . Hence, 

H S  H and the corresponding Lorenz curve is (Fellman, 1995 and 2001):  
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, (4.1.11) 
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where iiX qxF )( .  

If we choose the sequence ,...2,1i  so that 1,  ii qx  and hence, 

ik  in (4.1.10) we obtain a limit Lorenz curve 
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. (4.1.12) 

This Lorenz curve has no well-defined income distribution.
4
It does not 

correspond to a member of the class H but we can come arbitrarily close to it by 

choosing i
q  in (4.1.11) arbitrarily close to 1, that is, the proportion of benefit-

receivers tends towards zero. We can prove: 

Theorem 4.1.2. (Fellman, 1995). The Lorenz curve )( pL  is inferior to the 

Lorenz curves for the class H. 

Proof. Choose an arbitrary policy )(xh  in H. We can evaluate its Lorenz 

curve in the following way: 

 
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
 

This inequality holds for all 1p . 

Figure 4.1.1 gives examples of the Lorenz curves )( pLX , )(0 pL  and )( pL . 

The Lorenz curves (4.1.8) and (4.1.12) define the semi-closed region of 

attainable Lorenz curves (Figure 4.1.1). 

                                                           
4Vaguely speaking the limit inferior Lorenz curve in (4.1.12) corresponds to a policy, which gives all benefits 
to the richest income-receiver. 
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Figure 4.1.1  The Lorenz curves )(),( 0 pLpL X  and )( pL . The region between the 

extreme Lorenz curves is the region for attainable Lorenz curves (Fellman, 2001).  

The Gini coefficient G  corresponding to the Lorenz curve (4.1.12) is  




  
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
. (4.1.13) 

The final formula (4.1.13) is an exact equality and is an upper bound for all 

Gini coefficients for the policies in H. However, it does not correspond to any 

member of the class H. From Theorem 4.1.2 and the convergence of the policies 

in HS  it follows that (4.1.13) is a supremum of the Gini coefficients belonging 

to H. For the Gini coefficient, the generalized Gini coefficient and the welfare 

index we obtain the bounds (Fellman, 1995): 
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))(1()()())(1()( 




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
 X

X

XhX

X

X GGGGG 





  (4.1.15) 

and 

 2
XhX

WWW . (4.1.16) 

From the deduction of the bounds in (4.1.14), (4.1.15) and (4.1.16) it follows 

that the formulae hold for arbitrary income distributions. For a specific income 

distribution the lower bounds in (4.1.14) and (4.1.15) and the upper bound in 

(4.1.16) can be sharpened and the accuracy of the bounds was discussed in 

detail in Fellman (1995, 2001). The strength of the bounds is that they are 

independent of the distribution )(xFX  and depend only on the basic quantities 

XXG ,  and  . In addition, the formulae obtained, are simple functions of 

these quantities. If 0  then both the upper and lower bounds in (4.1.14), 

(4.1.15) and (4.1.16) converge towards XG , )(XG  and XW , respectively, 

indicating that the approximations performed do not cause any "bias".  

The bounds presented cannot be used as approximate formulae for a specific 

policy in H. The central role of these intervals is that they define limits for the 

attainable index values and hence give indications of the redistributive effect of 

the class of transfer policies. C.f. with the analysis of the formulae (3.1.20), 

(3.1.21) and (3.1.22) for the tax policies in Section 3.1. 

Every Gini coefficient belonging to the semi-closed interval   GGG ,
~

0  

and every point within the semi-closed region limited by the Lorenz curves 

)( pL  (excluded) and )(0 pL  (included) is attainable by a member of the class 

H. These results can be given in following theorems:  
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Theorem 4.1.3. (Fellman, 1995). There is a member of the class H with a 

prescribed Gini coefficient   GGG ,
~

0 . 

Proof. Choose 
i

q in (4.1.11) so that the corresponding member of the 

sequence (4.1.10) has a Gini coefficient 
i

G  which exceeds )( pLh . Construct a 

member of the class H as a linear combination of (4.1.7) and this member of 

(4.1.11). We get iGGG )1(
~

0    and the prescribed value of the Gini 

coefficient is obtained for 

 
0

0

~
~

GG

GG

i



 . (4.1.17) 

This means that there exists a policy that gives a post-transfer income 

distribution with the Gini coefficient G
~

. 

Remark. Theorem 4.1.3 says that there exists at least one member of the 

class H that results in a post-transfer income distribution with a prescribed Gini 

coefficient within the closed interval  GG ,0 . In general, this policy is not 

unique, but the extreme coefficient 
0

G  is attainable only by the extreme policy. 

We can also prove: 

Theorem 4.1.4. (Fellman, 1995). There is a member of the class H that 

satisfies the condition lpLh

~
)~(  , where  )~(),~(

~
0 pLpLl  . 

Proof. Choose a member from the set (4.1.10) such that its corresponding 

Lorenz curve )( pLi  satisfies the inequality lpLi

~
)~(  . The solution to Theorem 

4.1.4 can be constructed by a linear combination of the policy (4.1.7) and the 
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chosen member of (4.1.10). The prescribed condition is obtained for 

)~()1()~(
~

0 pLpLl i    and  

 
)~()~(

)~(
~

~

01

0

pLpL

pLl




 . (4.1.18) 

Every point within the closed region, limited by the Lorenz curves )(0 pL  

and )( pL , is attainable by a Lorenz curve corresponding to a member of the 

class H. This means that there exists a policy that gives a post-transfer income 

distribution such that the lowest proportion p~  of income receivers receives 

exactly the proportion l
~

 of the total amount of post-transfer income. Within the 

class H, the solution discussed in Theorem 4.1.4 is in general not unique. 

Remark. In fact, Theorem 4.1.4 can be generalised to the whole region 

 )~(),~(
~

0 pLpLl  . If the given point is located on the lower border, that is 

)~()~( pLpLh  , then the solution is a member of the sub-set HS  under the 

restriction pqi
~ . 

Consider the Lorenz curve )( pLX  and a Lorenz curve )( pLh  for an arbitrary 

member )(XhY  . According to the general theory, we have 

 X

p
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x
pL  )(  
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p

h
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Now, )( pp xhy   and pp xy  , indicating that Y stochastically dominates X. 

Furthermore, we obtain 

 










X

X

X

h

p

p

L

L

)(

)(
 . (4.1.19) 

This is a necessary restriction on feasible Lorenz curves for members of the 

class H. In general, there may be Lorenz curves between the extreme ones that 

do not correspond to policies in the class H. The inequality (4.1.19) indicates 

also that the Lorenz curve for the transformed variables cannot differ markedly 

from the Lorenz curve of X. This is especially notable for small values of   

 X / . For the extreme policy (4.1.7) and for the sequence of policies in 

(4.1.10), equality in the formula (4.1.19) is obtained for whole subintervals; 

10  pq  and iqp 0 , respectively. For the inferior Lorenz curve (4.1.12), 

equality holds within the semi-closed interval 10  p . These properties stress 

the optimality of the extreme policies. In the next section we give necessary and 

sufficient conditions that a given Lorenz curve corresponds to a transfer policy 

belonging to the class H. 

4.2  Attainable Lorenz Curves 

Above we noted that among post-transfer income distributions there exist 

distributions with given coefficients and distributions whose Lorenz curves 

have given, prescribed co-ordinates ),( lp . However, we also stressed that every 

Lorenz curve within the admissible region is not necessarily attainable. Now, 

we derive necessary and sufficient conditions that a given Lorenz curve 

corresponds to a transfer policy belonging to the given class H. A similar study 

has been performed for tax policies in Chapter 3 and in Fellman (2001, 2002). 
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In general, let U and V be non-negative stochastic variables having the 

distributions )(uF
U

 and )(vF
V

, the means 
U

  and 
V

  and the Lorenz curves 

)( pL
U

 and )( pL
V

, respectively. Stochastic dominance of first, second and third 

order can be defined by alternative equivalent conditions. Some of these are 

given by Maasoumi and Heshmati (2000). (cf. also Davidson and Duclos 2000, 

Klonner, 2000 and Zheng, 2000). Using our notations, the Maasoumi-Heshmati 

(2000) definition of stochastic dominance of first order is (c.f. Definition 3.2.1). 

Definition 4.2.1. The variable U First Order Stochastic Dominates V if and 

only if any one of the following equivalent conditions holds: 

i.    )()( VgEUgE   for all increasing functions g. 

ii. )()( uFuF
VU

  for all u. 

iii. pp
vu   for all p ( 10  p ). 

We can prove the following theorem (c.f. Lemma 3.2.1). 

Theorem 4.2.1. Let U and V be non-negative stochastic variables having the 

distributions )(uF
U  and )(vFV , the means U  and V  and the Lorenz curves 

)( pL
U  and )( pL

V , respectively, then the conditions: 

(i) U stochastically dominates V. 

(ii) )()( vFvF
VU

  for all v. 

(iii) pp vu   for all p ( 10  p ). 

(iv) 
V

U

U

V

pL

pL










)(

)(
 for all p ( 10  p ). 

are equivalent.  
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Proof.  The equivalence between (i), (ii) and (iii) is given in Definition 4.2.1. 

Now, we only have to prove the equivalence between (iii) and (iv) (say). The 

connection between (iii) and (iv) are the general formulae 

 
U

p

U

u
pL  )(  and 

V

p

V

v
pL  )( . (4.2.1) 

a) Assume that (iii) holds. Now, using (4.2.1) we obtain 

)(

)(
1

pL
pL

u

v

UU

VV

p

p








 

and the condition (iv) is obtained. 

b) Assume that (iv) holds. Now 

1

)(

)(





























U

p

V

p

U

V

V

U
uv

pL

pL




 

p

p

u

v
1 , 

pp
vu   

and the proof is completed.  

Remark. The condition (iv) in Theorem 4.2.1, being equivalent with (i), (ii) 

and (iii), indicates that (iv) is a criterion for stochastic dominance of first order 

between two positive stochastic variables. This criterion was also presented in 

Fellman (2003) and in Chapter 3. 

In Section 4.1 we have noted that stochastic dominance of first order is a 

necessary condition that a transformed distribution is a post-transfer income 

distribution corresponding to a policy of the class H. In the following we obtain 
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sufficient conditions. Our results can be given in the following theorem, which 

is analogous to Theorem 3.2.1. 

Theorem 4.2.2. Consider a Lorenz curve )( pLY  and a corresponding 

stochastic variable Y with the distribution )(yFY  and the mean )(  X . Then 

the necessary and sufficient condition that the Lorenz curve )( pLY  is an 

attainable Lorenz curve of a member of H, ))(()()( xFLxh XX
   being the 

member and )(yF
Y  being the corresponding post-transfer distribution, is that 

one of the following equivalent conditions hold: 

i. Y stochastically dominates X. 

ii. )()( xFxF
YX

  for all x. 

iii. pp
xy   for all p ( 10  p ) or. 

iv. 











X

X

X

Y

pL

pL

)(

)(
. 

Proof. Assume that the presumptive post-transfer income distribution is 

)(yFY  with the mean )(  X . We introduce the quantiles px  and py , where 

pxF pX )(  and pyF pY )( . These quantiles can also be defined as 

pX xpF  )(1
 and pY ypF  )(1

. In Section 4.1 we noted that 

 pp
xy   for all p ( 10  p )  (4.2.2) 

is a necessary condition for )(yFY  to be an attainable post-transfer income 

distribution. From (4.2.2) it follows that 
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)()()(
pXpYpY

xFpyFxF   for all p ( 10  p ). 

The condition 

 )()( xFxF
YX

  for all x (4.2.3) 

being equivalent with (4.2.2), is also a necessary condition that the post-transfer 

income distribution corresponds to a transfer policy belonging to H. From 

formula (4.2.3) we obtain 

 xxFFxFF
YYXY

  ))(())(( 11
 for all x. (4.2.4) 

In the following we prove that the condition that the distribution satisfies 

(4.2.3) is sufficient, that is, the distribution is a post-transfer income distribution 

for a member of the class H. Consequently, the equivalent conditions (i) and (iii) 

are also sufficient. 

Consider a distribution with mean )(  X  satisfying (4.2.3). According to 

the definition of a distribution function we have 

)()( yFyYP Y . 

The cumulative distribution function is monotone increasing and 

 )())()(( yFyFYFP
YYY

 . (4.2.5) 

If )(YFZ
Y

  and )(yFz
Y

 , then )(1 ZFY
Y

 , )(1 zFy
Y

  and  

 zzZP  )( . (4.2.6) 
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The transformed variable )(YFZ Y  is uniformly distributed over the 

interval (0, 1) and (4.2.6) is an old well-known result. Consider the initial 

distribution )(xFX . Then 

 ))()(()( 11 zFZFPzZPz
XX

  . (4.2.7) 

Let )(1 ZFX X
  and )(1 zFx X

  then )(XFZ X  and )(xFz X .  

Now, 

 )())(()( 11 xhxFFzFy
XYY

 
 (say). (4.2.8) 

Hence )(xh  is continuous and monotone increasing. In addition, from (4.2.4) 

follows that )(xh  satisfies the condition  

 xxh )(  (4.2.9) 

and )(xh  belongs to H and the distribution F yY ( ) , having the mean )(  
X

, 

corresponds to a policy belonging to the class H and the sufficiency is obtained.  

Let us now introduce Lorenz curves and obtain the conditions that a specific 

Lorenz curve (and the corresponding distribution )(yF
Y ) can be attained by a 

member of the class H. Let us consider an arbitrary Lorenz curve )( pL  with 

the conditions: 

i. )( pL  has a continuous derivative of the first order ( )( pL  ). 

ii. )()1(lim
1

pLp
p




 =0. 
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These conditions imply that the corresponding distribution )(yFY = )(


y
M , 

where )(M  is the inverse function to )( pL   is continuous and has a finite 

mean (Fellman, 1976, 1980). In those papers, it was assumed that the second 

derivative exists but this condition is not necessary in this context. In general, 

when the Lorenz curve )( pL  and the mean are given, the corresponding 

income distribution is unique.  

Consider the distribution )(yF
Y  with the mean  X . We have 

 


X

py
pL )(  and )()()(1 pLpFy XYp

   . From these formulae it 

follows that ))(()()( xFLxh XX
  . Hence, the condition  

 xxFLxh
XX

 ))(()()(   (4.2.10) 

is a necessary condition for attainability. On the other hand let us assume that 

(4.2.10) holds. Let F yY ( )  be the distribution, which corresponds to L p( ) and 

has the mean  X . Then 

ppYXXpXXp yyFLpLxFLx  ))(()()()())(()( 
, 

and pp
xy   for all p ( 10  p ). Consequently, (4.2.10) is also sufficient and 

the proof is completed. 

The content in Theorem 4.2.2 indicates that every stochastic variable Y, 

which stochastically dominates X and whose mean is  X  and whose 

Lorenz curve belongs to the semi-closed Lorenz region, is attainable by a policy 

belonging to H. The condition (iv) implies after integrations that 
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 )()()( pLpL
XXX

  . (4.2.11) 

indicating Generalized Lorenz Dominance (GLD). The integration step from 

)(
)(

)( pLpL X

X

X 






 given in (iv) in Theorem 4.2.2 to the condition (4.2.11) 

is not reversible. Consequently, GLD is only a necessary condition, or otherwise 

expressed, stochastic dominance implies GLD (cf. Lambert 2001 p. 49).  

4.3  Discontinuous Transfer Policies with a Given Lorenz 

Curve 

In earlier papers we have studied classes H of continuous transfer policies, 

defined in (4.1.1) and below in (4.3.1). In this section we consider an expanded 

class H*, containing discontinuous policies, defined below in (4.3.2), and 

generalize the results holding for class H to class H*. A realistic transformation 

describing a general transfer policy must be continuous, but we also are 

prepared to consider situations where discontinuous policies are plausible.  

For class H we have obtained supreme and inferior Lorenz curves  pLL 0  

in (4.1.8) and  pLL


  in (4.1.12). In addition, we have proved that there are 

policies belonging to H with given Gini coefficients or Lorenz curves passing 

through given points in the  Lp,  plane. The necessary and sufficient 

conditions under which a given Lorenz curve )( pL  corresponds to a member of 

class H of transfer policies are equivalent to the condition that the transformed 

variable )(XhY   stochastically dominates the initial variable X.  
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The notations in this section will be similar to those in our earlier sections. 

Let the income be X with the distribution function )(xXF , density function 

)(xfX , mean 
X

  and Lorenz curve )( pL
X

. The basic formulae are  






0

)( dxxfx XX  

and  



px

X

X

X
dxxfxpL

0

)(
1

)(


, 

where pxpXF )( . 

We introduce the transformation )(XhY  , where )(h  is non-negative and 

monotone increasing. Since the transformation can be considered as a tax 

( xxh )( ) or a transfer ( xxh )( ) policy, the transformed variable Y is either 

the post-tax or post-transfer income. The mean and the Lorenz curve for 

variable Y are  





0

)()( dxxfxh
XY

  

and 


px

X

Y

Y
dxxfxhpL

0

)()(
1

)(


. 

A general theorem concerning Lorenz dominance is (Fellman, 1976; 

Jakobsson, 1976; Kakwani, 1977 and also given in Theorem 1.4.1): 

Theorem 4.3.1. Let X  be a non-negative, random variable with distribution 

)(xF
X

, mean 
X

  and Lorenz curve )( pL
X

. Let )(xh  be a non-negative, 



138         Mathematical Analysis of Distribution and Redistribution of Income 
 

http://www.sciencepublishinggroup.com 

monotone-increasing function; let )(XhY   and let YYE )(  exist. The 

Lorenz curve )( pL
Y

 of Y exists, and the following results hold: 

i. )()( pLpL XY   if 
x

xh )(
 is monotone decreasing. 

ii. )()( pLpL XY   if 
x

xh )(
 is constant. 

iii. )()( pLpL XY   if 
x

xh )(
 is monotone increasing. 

Recently, Egghe (2009) returned to Theorem 4.3.1 and gave a new proof. In 

addition, he showed that the theorem is not true for the dual transformation. 

Fellman (1980, 2003) introduced the class of transfer policies  

 H: 
 









X

XhE

xxh

)(

)(
, (4.3.1) 

where )(xh  is non-negative, monotone increasing and continuous.  

This class was considered in Section 4.1. Now we modify this class allowing 

)(xh  to be discontinuous and define 

 H*:
 








XXhE

xxh

)(

)(
, (4.3.2) 

where )(xh  is non-negative and monotone increasing.  

If )(xh  is discontinuous and satisfies Theorem 4.1.1 and the transformation 

should result in an increasing transformed variable with finite mean then the 

discontinuities can only consist of finite positive jumps and the number of 

jumps can be assumed to be finite or countable. (Fellman, 2009). 
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Consider an optimal policy which Lorenz dominates all policies in H*. 

According to Theorem 4.1.1, 
x

xh )(
 must be monotonically decreasing. Conse-

quently, it must be continuous because if )(xh  has a discontinuity point, then 

the ratio 
x

xh )(
 has a positive jump and cannot be monotonously decreasing. 

Consequently, although class H*, in comparison with the initial class H, also 

contains discontinuous policies, the policy 

 )(
0

xh
0

00

bx

bx

x

b









, (4.3.3) 

being optimal among all continuous policies, is still optimal for the class H*. It 

has the Lorenz curve 

 
 
























000

0

0

0

0

)()(

)(

qpqLpLq
b

qpp
b

pL

XX

Y

X

Y

Y








, (4.3.4) 

where )(
00

bFq
X

 . The inferior Lorenz curve presented in Section 4.1 can be 

obtained from the sequence (Fellman, 2001) 

 Hs: ...),2,1(
)(

)( 







 i

xxxxkx

xxx
xh

iii

i

i . (4.3.5) 

Define ki (>0) so that 





x

Xii

i

dxxfxxk )()( , 
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then )x(hi  is continuous and monotone increasing, ih x x( )   and 

 
Xi

XhE ))(( . Hence, Hs  H  H*, and the corresponding Lorenz curve 

is (Fellman, 2001) 

 

1 1

X
X i

X

Xhi
X i

X

X ii iX X

i

X ii iX X

( p ) p qL

L ( p ) ( )qL

( L ( p ) ( )) ( p )q qxL
p q

( ( )) ( )q qxL










 








 
 
   
 

   

.  (4.3.6) 

If we choose the sequence ,...2,1i  so that 
i

x , 1
i

q , and hence, 


i

k  in (6), we obtain a limit Lorenz curve 

  )( pL  













11

1)(

p

ppLX

X

X





. (4.3.7) 

Independently of the existence of discontinuity points we can still prove 

(Fellman, 2009). 

Theorem 4.3.2. The Lorenz curve )( pL


 is inferior to the Lorenz curves for 

class H*. 

Proof. Consider an arbitrary, continuous or discontinuous policy )x(h  in H* 

with Lorenz curve )p(Lh . Using the condition xxh )( , we can evaluate 

)( pL  in the following way: 
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)()()(
1

)()(
1

)(

0

0

pLpLdxxxf

dxxfxhpL

X

X

X

x

X

X

x

X

X

h

p

p























. (4.3.8) 

This inequality holds for all 10  p .  

In addition, H  H*, and consequently, there exist policies belonging to H* 

with given Gini coefficients or Lorenz curves passing through given points in 

the  Lp,  plane. Hence, class H* of transfer policies containing discontinuous 

policies satisfies the same properties as the initial class H discussed in Fellman 

(1980) and Fellman (2001). Figure 4.3.1 includes the Lorenz curves )( pL
X

, 

)(
0

pL  and )( pL


. The figure also shows a Lorenz curve, )( pL
Y

 with a cusp 

corresponding to a discontinuous transformation. 

In Fellman (2003) and in Section 4.2 we obtained necessary and sufficient 

conditions under which a given differentiable Lorenz curve )( pL  corresponds 

to a member of a given class of transfer policies. These conditions are equiva-

lent to the condition that the transformed variable )(XhY   stochastically 

dominates the initial variable X.  

Now we generalize the results, including the classes with discontinuous 

transformations. A discontinuous transformation )(xh  can only have a count-

able number of positive finite steps, and every jump in the transformation )(xh  

results in a cusp in the Lorenz curve.  
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Figure 4.3.1  A sketch of the Lorenz curves )( pLX  and )( pLY , when )(xh  is 

discontinuous for ax   and )(aFq X . Note the cusp of )( pLY  at the point qp  . 

The figure also includes the maximum and minimum Lorenz curves )(0 pL  and )( pL  

for the transfer policies in H* (Fellman, 2003). 

Consider a Lorenz curve )( pL  which is convex and differentiable 

everywhere with the exception of a countable number of cusps. More general 

Lorenz curves cannot be considered. The corresponding distribution is 

)()(


y
MyFY  , in which )(M  is the inverse function to )( pL   and Y is 

assumed to have the mean  
X

 (Fellman, 1980). If )( pL  has a cusp, 

then the derivative )( pL   and the function )(M  have positive jumps.  

In general, when Lorenz curve )( pL  and the mean of the corresponding 

distribution are given, the income distribution is unique (see Chapter 1). Now, 

we prove that the conditions obtained earlier still hold for class H*, that is, we 

will characterize attainable Lorenz curves even though they are not universally 

differentiable.  
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Fellman (2003) has noted that stochastic dominance of first order is a necessary 

condition for a transformed distribution to be a post-transfer income distribution 

corresponding to a policy of class H in (4.3.1). The result is given in: 

Theorem 4.3.3. Consider Lorenz curve )( pL
Y

 and a corresponding 

stochastic variable Y with the distribution )(yF
Y

 and the mean )(  
X

. Then 

the necessary and sufficient condition that the Lorenz curve )( pL
Y

 is an 

attainable Lorenz curve of a member of H*,  

))(()()( xFLxh
XX

  , 

being the member and )(yF
Y

 being the corresponding post-transfer distribution, 

is that one of the following equivalent conditions hold: 

i. Y stochastically dominates X. 

ii. )()( xFxF
YX

  for all x. 

iii. pp
xy   for all p ( 10  p ) or. 

iv. 











X

X

X
pL

pL

)(

)(
. 

When we prove this theorem for class H*, we have to show that pp
xy   

holds for distribution )(yFY . The proof of Theorem 4.2.2 given earlier in 

Fellman (2003) can be applied as such for )(xh  wherever it is continuous, but 

the discontinuity points need special attention. Class H* of transfer policies 

containing discontinuous policies satisfies the same properties as the initial 

class discussed in Fellman (1980) and Fellman (2003), and we obtain the 

transformation  
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   )()( xFLxhy
XX

  . 

If )( pL  has a cusp for qp  , then )(xh  has a jump for 
q

x . Consider a 

neighbourhood hxxhx qq  , where 
q

x  is the only discontinuity point of 

)(xh , and choose a 0  so small that hxxxhx qqqq    .  

Let 





qq
yxh )(lim

0



 and 





qqq

yyxh )(lim
0




.  

Now, the transformation )(xh  is continuous for all 0 , and  

   
 



qqXXq

xxFLy )( . 

When  0 , the inequality holds for the limits, and we obtain qq
xy 

 . 

Similarly, we obtain  

   
 



qqXXq

xxFLy )( , 

and when  0 , the inequality holds for the limits, and we obtain qq xy  . 

Hence, pp xy   for all p, and )(XhY   stochastically dominates the initial 

variable X. 

4.4  Discussion 

In this chapter we have studied the effects of transfer policies. A realistic 

transformation describing a general transfer policy must be continuous. The 

generalized class H* of transfer policies containing discontinuous policies 

satisfies the same properties as the initial class discussed in Fellman (1980) and 

Fellman (2003). The theory presented here is obviously applicable in connec-
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tion with other income redistributive studies such that the discontinuity can be 

assumed to be realistic. If the problem is reductions in taxation, then the tax 

reduction for a taxpayer can be considered as a new benefit (Fellman, 2001). 

Consequently, the class of transfer policies H* can be used for comparisons 

between different tax-reducing policies. If transfers are increased, the effect of 

increases on a receiver can also be studied through transfer policies H*. In 

general, such changes may be mixtures of several different components and 

discontinuity cannot be excluded, and the continuity assumption can be dropped. 

One general result is still that continuity is a necessary condition if one expects 

that income inequality should remain or be reduced. Analogously, tax increases 

and transfer reductions can be considered as new tax policies (Fellman, 2001). 

Empirical applications of the optimal policies among a class of tax policies 

and the class of transfer policies have been discussed in Fellman et al. (1999), 

where we developed ''optimal yardsticks'' to gauge the effectiveness of given 

real tax and transfer policies in reducing inequality. We return to these problems 

in the next chapter. 
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Fellman et al. (1996, 1999) developed an approach to evaluating the design of 

the tax system and social transfer system scheme by relating the redistributive 

properties that would have occurred under an optimal design of taxes and 

transfers. They presented the findings which generalise the findings presented in 

Fellman (1976) and Fei (1981) and identified the optimal tax and transfer 

policies in a wide class of possible policies, constrained only to raise a given 

amount in tax revenue and/or distribute a given amount of cash benefits. These 

optimal policies for the given budget size would maximize welfare in the 

distribution of disposable money income in the absence of distinct effects. The 

extent to which observed policies fall short of this ideal, in reducing inequality, 

was measured by new indices, in which a distributional judgement parameter 

can be set to reflect alternative degrees of inequality aversion and to carry out 

sensitivity analysis. 

In the Finnish case for the period 1971-1990, transfers were found not to be 

very efficient in redistribution income across households, whereas tax policies 

came much closer to the inequality reducing effect of an optimal pattern 

(Fellman et al., 1999). 

5.1  Optimal Tax Policy 

Consider, as above, the before tax income distribution, assumed given with 

the distribution function )(xFX , density function )(xf
X

, mean 
X

 , Lorenz 

curve )( pLX  and the Gini coefficient 
X

G . Following Chapter 3, we consider a 

class of tax policies characterized by the transformation )(XuY   where )(u  

is non-negative, monotone increasing and continuous with the properties 
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 U: 















X

XuE

xu

xxu

))((

1)(

)(

, (5.1.1) 

where )(xu  is the post tax income associated with pre-tax income x and the 

mean tax, assumed given. Consequently, we consider the same class of policies 

as in (3.1.1). Fellman et al. (1999) considered a slightly different class because 

the derivative condition was not assumed. Following Fellman et al (1999) we 

consider here impact effects only, not allowing individual agents for example to 

adjust their labour supplies in anticipation of the particular tax policy in the 

class which may be applied.  

The polar case presented in (3.1.8): 

 uo: 














axa

axx

xu

00

0

0
)( , (5.1.2) 

serves as a reference or benchmark for what follows. Here for incomes 
0

ax   

there is no tax, but for incomes 0ax   the tax is 0ax  . In Section 3.1 we have 

shown that there exists a unique value 0a  such that 00 ))(( aXuE X    

(with equality if and only if 0)( 0 aFX ), and that the after-tax Lorenz curve 

given in (3.1.12) is  
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0
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0

0
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



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














, (5.1.3) 

where )( 00 aFp X . We have shown that the Lorenz curve (5.1.3) is the highest 

for the whole class of transformations (5.1.1). In Chapter 3 we stated that it 
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Lorenz dominates the initial income distribution and that irrespectively of the 

inclusion of the derivative restriction in (5.1.1) or not, the optimal policy is the 

same. For proofs of these and all subsequent mathematical assertions, see 

Chapter 3, Fellman (1995) and Fellman et al. (1996). 

Although not all members of the class of policies under consideration are 

progressive, i.e. inequality reducing the policy )(
0

xu  generates a post-tax 

income distribution that Lorenz dominates all tax policies of the given class U 

(Fellman, 1995, 2001; Fellman et al., 1996, 1999). Consequently, it also Lorenz 

dominate the flat tax policy xxu
X

X



 
)(ˆ , whose Lorenz curve is )( pL

X
. 

Consequently, )()(0 pLpL X  and )(
0

xu  Lorenz dominates the initial income 

variable X. 

Following the Atkinson (1970) theorem, (5.1.3) therefore implies maximal 

social welfare in this class, and )(0 xu  is in this sense optimal. 

The generalized Gini coefficient of Yitzhaki (1983) for income after this 

optimal tax policy is 

 


1

0

0

2 )()1()1(1)( dppLpG  , (5.1.4) 

which may be expressed in terms of the original Lorenz curve )( pL
X

 using 

(5.1.3). According to the formula (3.1.21) a lower limit of this generalized Gini 

coefficient is 
 

 
)(1

)(










X

X
X

G
G . Here  is a distributional judgement 

parameter, increases in which connote a more inequality-averse stance on the 

part of the social-decision maker. The case 2  is that of the ordinary Gini 

coefficient. 
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Now consider any actual (non-optimal) tax policy with mean tax  and let 

)(
X

G  and )(
TX

G


 be the generalized Gini coefficients for pre- and post-tax 

income, respectively. Let furthermore, )(
0
G be the generalized Gini coefficient 

for the optimal policy )(
0

xu  in (5.1.2). Fellman et al. (1999) proposed to 

measure the effectiveness of this actual policy by the index: 

 100
)()(

)()(
)(

0





 






GG

GG
I

X

TXX
T  (5.1.5) 

which records its inequality-reducing performance as a percentage )(
T

I  of the 

maximum reduction that could have been achieved with the same tax yield . 

This is in contrast with some existing approaches to the measurement of 

redistributive effect, namely those of Musgrave and Thin (1948), Pechman and 

Okner (1974) and Blackorby and Donaldson (1984), which express actual 

inequality reduction as a percentage of pre-tax inequality and equality. In the 

first two cases cited, the Gini coefficient is used, and in the last the Atkinson 

index, to measure inequality. See Lambert (2001, Section 8.4) for more of this. 

Our index thus uses the optimal tax policy as a yardstick, whereas the others use 

the pre-tax distribution. In fact, the Pechman and Okner construction, if not the 

other two, use an implicit ―optimal‖ yardstick, in essence comparing actual 

redistribution with that occurring if all income units were given the same post-

tax income (i.e., it uses perfect redistribution, with zero net budget, as a 

reference). By confining attention to the class of tax policies which satisfy the 

government budget constraint to assess the effectiveness of an actual tax, or 

index has, as Fellman et al. (1999) stressed, more realism and direct appeal. It 

also incorporates the distributional judgement parameter  which can be varied 

to carry out sensitivity analysis. 
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5.2  Optimal Transfer Policy 

Consider the income Y with distribution and density functions )(yF
Y

, )(yf
Y

, 

mean 
Y

  and Lorenz curve )( pL
Y

. In conformity with Chapter 4, we study a 

whole class of transfer policies characterized by a transformation )(Yh , where 

)(h  is non-negative, monotone increasing and continuous with the properties 

 
 









Y

YhE

yyh

)(

)(
, (5.2.1) 

where )(yh  is the income, including cash transfer from government, associated 

with original income y. These properties indicate that no income decreases, that 

the internal order of the incomes remains the same and that all the policies raise 

the mean income to  
Y

, where   is the mean benefit, taken as given. The 

scenario pursued here can apply as well to an income policy: in that case )(yh  

is the income after a policy-induced increase.  

The polar case which serves as a reference or benchmark for what follows is: 

 









byy

byb
yh )(

0  (5.2.2) 

i.e., all incomes below the level b are raised to b and all incomes above this 

level remain. It is shown in Section 4.1 that there exist a unique level b0 such 

that  

   
Y

YhE )(
0  

and for which the Lorenz curve for income including benefits according to 

(4.1.8): 
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(where )(
00

bFq
Y

 ). Fellman et al. (1999) gave a slightly different layout of 

the Lorenz curve, but the relation   )(
0000

qLqb
Y

 between the variables 

given in Section 4.1 proves the mathematical identity between the proposed 

formulae. The Lorenz curve )(
0

pL  is the highest for the whole class of 

transformations defined by (5.2.1) and higher than )( pL
Y

, thus engendering 

highest social welfare in the class (again not all policies in the class (5.2.1) are 

inequality reducing). 

The generalized Gini coefficient for income after this optimal transfer policy is 

 


1

0

0
2

0 )()1()1(1)( dppLpG  ,  (5.2.4) 

which may be expressed in terms of the original Lorenz curve by using (5.2.3). 

As with taxes, the effectiveness of any actual (non-optimal) transfer policy 

with mean benefit  and pre- and post-benefit generalized Gini coefficients 

)(
Y

G  and )(BYG  , respectively, may be measured in index form by 

 100
)()(

)()(
)(

1





 






GG

GG
I

Y

BYY

B . (5.2.5) 

Expressing the performance as a percentage of the maximum inequality 

reduction achievable for a given budget . The index in (5.2.5) can also be used 

to assess the inequality-reducing performance of an incomes policy )(Yh  , 
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measured against the optimal income policy )(
0

Yh  for the same average 

increase  in peoples incomes. 

5.3  The Optimal Redistributive Tax-transfer Policy 

We characterize each tax and transfer policy by the mean tax  and the mean 

transfer  where, we assume that   . The transformation of the original 

incomes can be performed in two steps, first the taxation which reduces mean 

income from 
X

  by an amount τ, and then the distribution of cash benefits so 

that the mean increases to  X . 

In this situation, the optimal tax and the optimal transfer policy of Sections 

5.1 and 5.2 can be joined to given tax and transfer strategy. Under the assump-

tion that both τ and ρ are taken as given, the joint strategy can be proved 

optimal, and actual combined tax and transfer programs can be gauged against it 

for their welfare. The rigorous assumption that both τ and ρ are taken as given is 

necessary for the optimality. Under the weaker assumption that only the 

difference    is taken as given, perfect redistribution will be attainable 

(Fellman et al., 1999). 

Following Fellman et al. (1999), we start with the taxation. The optimal tax 

policy Lorenz dominates any other tax policy. Let Y0 be post-tax income under 

the optimal tax policy and let Yu be post-tax income under an arbitrary tax policy. 

Assume that )()( 0 uYEYE   and denote as above the corresponding Lorenz 

curves )(
0

pL  and )( pL
u

. Under arbitrary taxation the poorest part of the popula-

tion (after taxes) is poorer than under the optimal taxation (no taxes paid).  



158         Mathematical Analysis of Distribution and Redistribution of Income 
 

http://www.sciencepublishinggroup.com 

If, after taxation, we consider the benefit policy, then for an optimal income 

distribution, the optimal benefit policy must be performed.  This means all 

benefits must go to the poor. Then the minimum income under the optimal 

taxation, b0 (say), is greater than the minimum income under the arbitrary 

taxation, bu. Consider the Lorenz curve after the benefit. Let the breaking points 

in (5.2.3) be q0 and qu, respectively. Obviously 
u

qq 
0

. Hence, )()(0 pLpL u  

for 
u

qp   and for 
0

qp  . For 
0

qpq
u

  the curved part in )( pL
u

 is convex 

and monotone and cannot intersect twice the linear part in )(
0

pL . Hence, 

)()(
0

pLpL
u

  for all 10  p . Consequently, if we join the optimal tax policy 

and the optimal benefit policy, the joint policy is optimal.  

As shown in Fellman et al. (1999) if 
00

ab   then 1
0
q  and   Xb0  

in which case the optimal policy creates perfect equality. If, on the other hand, 

00
ab   then 

00
pq   and the final Lorenz curve LD is defined by:  

)( pL
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)1.3.5(  

They derived, in a short and straightforward manner the result of Fei (1981). 

The class of combined tax-transfer policies in which (5.3.1) is optimal is Fei ś 

class of ―equity-oriented fiscal programs‖; moreover (5.3.1) is Fei´s ―two-
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valued program‖ shown to be optimal in his Theorem 7 (whose proof is 

complex and combinatorial). The analysis of Fellman et al. (1999) thus extends 

Fei ś insight to the more general case of fiscal programs with a non-balanced 

budget, in which the mean excess tax revenue 0   can be devoted to 

publicly provided goods and services repayment of debt, etc. Fellman et al. 

(1999) showed that in the case of these more general fiscal programs, where the 

tax yield   and benefit budget   are both specified, the two-valued  program 

with ―floor value‖ 
0

b  and ―ceiling value‖ 
0

a  (in Fei ś terminology) is also 

optimal. In particular, the analysis extends Fei ś Theorem 4, in which he shows 

(for   ) that either 00
ba   (the ―maximal rational budget‖ engendering 

perfect equality) or 00 ba  . Fei also proves, in his Theorem 5, that 0a  is 

decreasing and 0b  is increasing, in the common value   ; our own analysis 

proves that more generally, 
0

a  is decreasing in   and 
0

b  is increasing in   (by 

construction). 

Finally using the generalised Gini coefficient )(
D

G  for income after the 

optimal tax and benefit, system namely 

 dppLpG
DD

)()1()1(1)(
1

0

2


   (5.3.2) 

which is determined by the original distribution )( pL
X

 according to (5.3.1), the 

inequality-reducing performance of any actual (non-optimal) combined tax and 

benefit policy with mean tax   and mean benefit   can be assessed. Let  

 100
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)(, x

GG
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 (5.3.3) 
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be the index, where )(BTXG   is the generalized Gini coefficient for dispos-

able income after application of the actual tax and benefit policy and )(DG  is 

the generalized Gini coefficient for the optimal tax and benefit system. 

In next section we use the index (5.3.3) and present the analysis of the 

combined effect of taxation and benefit rules in Finland, 1971-1990.  

5.4  Empirical Illustration: Finland 1971-1990 

Fellman et al. (1999) illustrated their methods using data from Finland from 

1971 to 1990. The data used were drawn from the Household Budget Surveys 

(HBS) in Finland 1971, 1976, 1981, 1986 and 1990, a series of cross-sectional 

studies which are comparable over time. The income data in these surveys stem 

from tax and other administrative registers and can be considered to be of high 

quality. The sample size varies from 1296 in 1971 to 2897 in 1990. The taxation 

and benefit rules are the rules valid for the period 1971-1990. The sample is 

restricted to those households with positive disposable income. These data are 

also used in Example 2.3.1 in Section 2.3. 

The base x for taxes includes all taxable income, such as earnings self-

employment income, capital income, work-related and taxable transfers and 

private transfers. From this we subtract direct taxes t to get the base for all non-

taxable benefits b. These was taken in this application to be the two major 

benefit schemes that have remained non-taxable throughout time period covered, 

namely child allowances and housing subsidies. During the period, 1971-1990, 

child allowances are paid to the households at a flat rate per each child under 

the age of 16 (17 in 1990). From the third child onwards, the sum per child 

increases. Housing subsidies have been means-tested throughout the time period 

and are therefore negatively correlated with the tax base.  
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The income variables were standardized to be comparable across households 

of different sizes using the OECD equivalence scale, which assigns the weight 

of 1.0, 0.7 and 0.5 equivalent adults to the first and additional adults and 

children, respectively. Household disposable income per equivalent adult is 

equal to btx   (Fellman et al., 1999). 

In Table 5.4.1 we show inter alia the effectiveness indices )(TI , )(BI  and 

)(, BTI  estimated by Fellman et al. (1999) from the data (along with some 

other statistics discussed below). Following Fellman et al. (1999), the threshold 

for the optimal tax was calculated by the following simple procedure. They 

fixed the threshold to be equal to the ith income unit ś pre-tax income, )(ix  say, 

and collected all income above )(ix  of the income units that have higher 

income. If the total tax thus collected was higher than the actually collected 

amount, the threshold was set at )1( ix . This procedure was then repeated until 

the tax threshold led to less taxes being collected when the threshold was set to 

)(kx . The optimal post-tax income is then )(ix  for ki   and )(kx  for ki  . 

The benefit threshold and post-benefit income distribution were analogously 

estimated. The effectiveness of the actual tax system measured by our index, i.e., 

the inequality reduction of actual taxes relative to the optimal policy, declines 

from 1971 to 1981 and rises thereafter, thus having a slight U-shaped pattern 

over time. The inequality effectiveness of benefits declined between 1971 and 

1990 – with exception of 1981. The combined effectiveness of taxes and 

transfers followed the same U-shaped pattern as that of taxes alone. For instance, 

using 2 , in 1990 taxes achieved a 17.7% reduction in the Gini coefficient 

on moving from pre-tax to post-tax (but pre-benefit) income relative to the 

optimal tax policy. On moving from actual post-tax income to post-benefit 

income is reduced by 4.3% relative to the optimal benefits. On the other hand 
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moving from pre-tax and pre-transfer income toi disposable income would 

achieve a 15.2 % reduction in equality relative to the optimal combined tax and 

transfer policy. 

Table 5.4.1  Redistributive effectiveness of taxes and benefits in Finland,  

1971-1990, measured using generalized Gini coefficients. 

   
Taxes 

  
Benefits 

  

Taxes 

and 

benefits 
 

  
Actual Optimal 

Maxi-

mum 
Actual Optimal 

Maxi-

mum 
Actual Optimal 

Maxi-

mum 

 Year )(TD  )(TI  )(TP  )(BD  )(BI  )(BP  )(, BTD  )(, BTI
 )(, BTP  

 
1971 8.8 17.3 0.51 1.7 14.3 0.12 10.4 17.1 0.61 

 
1976 8.2 12.9 0.63 1.8 13.0 0.14 9.8 13.4 0.73 

1.5 1981 7.0 11.2 0.63 3.1 17.9 0.18 9.9 13.1 0.76 

 
1985 9.9 15.0 0.66 2.6 11.8 0.22 12.2 14.8 0.83 

 
1990 12.5 17.5 0.71 1.4 8.0 0.17 13.7 16.3 0.84 

 
1971 7.8 18.3 0.43 1.5 10.5 0.14 9.2 16.8 0.55 

 
1976 7.8 14.0 0.56 1.5 10.0 0.15 9.3 13.5 0.69 

2.0 1981 6.8 12.4 0.55 2.8 13.7 0.21 9.5 13.2 0.72 

 
1985 9.1 15.5 0.58 2.5 9.7 0.26 11.3 14.3 0.79 

 
1990 11.5 17.7 0.65 0.9 4.3 0.21 12.3 15.2 0.81 

 
1971 7.2 19.7 0.37 1.5 9.3 0.16 8.6 16.9 0.51 

 
1976 7.5 15.1 0.50 1.6 8.8 0.18 9.0 13.8 0.65 

2.5 1981 7.1 14.3 0.49 2.6 11.3 0.23 9.5 13.8 0.69 

 
1985 8.6 16.2 0.53 2.7 9.2 0.29 11.0 14.3 0.77 

 
1990 11.0 18.6 0.59 0.7 3.1 0.23 11.7 14.9 0.78 

Source: Fellman et al. (1999). 

Notes. The reduction in equality D is measured as the percentage decline in the 

generalized Gini coefficient due to actual taxes, benefits, or both. The optimal 

inequality reduction I is measured as the actual decline in pre-tax, (transfer or tax and 

transfer) income inequality as a percentage of the optimal decline. See text, especially 

equations (5.1.5), (5.2.5) and (5.3.3) for exact definitions. The maximal decline P is 

measured as a proportionate reduction that would occur if the optimal policy were 

implemented. These are related as PID  . Note that D and I are expressed as 

percentages whilst P is a fraction. Differences between D and PI   in the reported 

figures are due to rounding errors. 
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The inequality effectiveness of benefits is always smaller than that of taxes. 

This is unsurprising as the actual tax schedule in Finland is progressive during 

the period covered by the data. However, the main benefit studied, the child 

allowance, depends only on the number of children in the household. The 

optimal tax schedule thus only increases, rather than introduces, progressivity, 

whereas the optimal benefit policy would redistribute child allowances heavily 

to the lower tail, thus greatly increasing the inequality reduction of the actual 

benefits. The central argument for this is that the tax rate is related to the 

individual money incomes and not to the equivalent income calculated for the 

whole household. 

The indices )(TI , )(BI  and )(, BTI  presented by Fellman et al. (1999) 

measure the effectiveness of tax and benefit policies relative to optimal 

yardsticks which are conditional on the budget sizes ρ and τ. Consider the 

Pechman and Okner (1974) indices 

 100x
G

GG
D

X

TXX

T




  (5.4.1) 

of inequality impact ( here for taxes). There is a simple relationship between our 

indices and those of Pechman and Okner (suitably generalized for 2 ). It is 

as follows  

 )()()( 
TTT

PID   (5.4.2)  

 )()()( 
BBB

PID   (5.4.3) 

 )()()(
,,,


BTBTBT
PID  . (5.4.4)  

Where the terms  
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0


XXT

GGGP  , 
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  )(/)()()(
1


XXB

GGGP   

and  

  )(/)()()(
,


XDXBT

GGGP  , 

express in proportionate terms the maximum inequality reduction that could 

have been achieved with the given budget sizes (Fellman et al., 1999). 

5.5  Concluding Remarks 

Following Fellman et al. (1999) we have demonstrated the properties of 

optimal tax and benefit policies and shown how to gauge the effectiveness of 

actual (non-optimal) tax and benefit policies, as well as combined tax-benefit-

systems, using the inequality impact of optimal policy as a yardstick. This has 

resulted in new indices  for income taxes which contrast markedly with some 

existing indices of redistributive effect (progressivity), which either involve no 

optimal yardstick or at best a very unrealistic one. The new optimal yardstick is, 

of course, not fully realistic. It serves as a benchmark, just as, for example, the 

45° line of perfect equality, though unattainable, is taken routinely as the 

yardstick against which to measure inequality using the Gini coefficient. 

In the case of benefit systems, the indices lend themselves directly to another 

use: to measure the inequality performance of an incomes policy. Furthermore, 

all of the indices incorporate an inequality aversion parameter, and can be used 

to assess the contribution of ―targeting‖ to observed inequality trends, along 

with that of budget size. Fellman et al. (1999) illustrated this by an application 

to Finnish data (and showed, incidentally, that the findings were quite robust to 

changes in the assumed inequality aversion of the evaluator). 
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Fellman et al. (1999) stressed that all of the constructed indices are impact 

measures, which take the pre-tax income distribution as exogenous to the choice 

of tax and benefit policies from classes which would have the given mean 

budget size ( or ). With more sophisticated modelling, for example of 

people ś preferences over consumption and leisure or, more ambitiously, in a 

computable general equilibrium environment, one could in principle devise 

indices of policy effectiveness with superior welfare properties  but these 

would not be measurable from published income data. 

Another restrictive assumption of the mathematical modelling is that taxes 

and government transfers do not disturb the ranking of income units from 

poorest to richest by their living standards (equivalent incomes). Some lump-

sum elements in the tax code (e.g. child allowances) can cause reranking in 

equivalent income terms, as can benefits going to people on the basis of factors 

outwith the equivalence scale (e.g. single mothers, the handicapped etc.). By 

using the Lorenz dominance criterion, Fellman et al. (1999) neglected any wider 

consideration of social needs. 
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