Chapter 2

Research Controllability and Dynamics of

Movement Singularly Perturbed System






In this chapter is formulated the criterion of controllability using properties of
the operator Gramm, and to deal with the evaluation of the standard deviation of
the trajectory of motion of the system.

2.1 Controllability Singularly Perturbed Systems of
Optimal Control with Constantly Acting
External Forces

Here is investigated the properties of controllability of the system (2.1.1) with
the help of operator Gram transforming infinite space in finite. Let the
controlled process is described by the equation

y=A(t,u)y+B(t, )u+ f(t,u), (2.1.1)
y(tg ) =y° (2.1.2)
y(t,u)=y (2.1.3)
A A o o
where A(t, i) = Az_(t) A3_(t) . B(tu)= zﬂ L ()= 2# ,
)z Iz

X
y= ( j eR™™ xeR" , zeR™ - state vectors, neC*[t,t],
( C*[t,.t,]— infinite space), f (t)eR", f,(t)eR™ constantly operating
outside forces; te[ty,t,], «>0— small parameter (0< x<1).

States x=X(t,x), z=z(t, ) are slow and fast motion of the system

(2.1.1), respectively. We assume the following assumptions regarding the

parameters of the system (2.1.1):
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1. Matrix A (t) (i=1,_4) - identified uniformly bounded and uniformly

continuous with their derivatives.
2. All eigenvalues of the matrix AA(t) have negative real parts for all

tet,t].

For linear systems usually criterion controllability are formulated using the
properties of a linear operator [4].

First, consider the simplest case when the matrix A(t,,u) in the equation of

the system (2.1.1) is equal to zero matrix. Then the dynamics of the system
described by the equation

y= B(t,,u)u + f (t,,u) . (2.1.49)
We pose the problem of the choice of control u(t)=u(t, ), which would

ensure at the time satisfy the boundary conditions (2.1.3). Considering the
conditions (2.1.2), (2.1.3) from the equation of motion (2.1.4) obtain the

y'=y° +_|1'B(t,y)u(s,y)ds+.|1‘ f (s, u)ds. (2.1.5)
b

fo

b
Then the expression L(u):jB(t,u)u(t,y)dt can be viewed as a linear

f
operator acting from the space Cr”[totl] to R™™. Because is required choose

the control u(t,,u) , which would satisfy the condition (2.1.5), it is easy to see,

b
that if y'—y° —j f (s,4)ds lies in the region of the operator L(u), then the

fo

desired transition to the state y(tl) =y available. Otherwise - is not. Therefore,
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to check whether state-controlled necessary to establish, whether it is in the

region values of the operator L(u).

Control u(t)=u(t, ), which transfers status of the system (2.1.4) from y°

4
at t=t, to y* exists only when the vector yl—y°—jf(s,y)ds lies in the

f

region values of a linear transformation

W(to,tl,y):iB(s,,u)B'(s,y)ds (2.1.6)

f

At one of the controls that translates system from one state into another and
has the form:

u(t, ) =B'(t, 1)7m (2.1.7)
where 1 is any solution of the equation
t1
W(to,tl,,u)nzyl—yo—jf(s,y)ds. (2.1.8)
fo
Now we move to a system of general form (2.1.1) when A(t,y) #0.

Integrating the equations of motion of the system (2.1.1) gives

y(tu)=Y (tt,, 1)y’ + }Y (t,5,1)B(s, )u(s, u)ds +i1[Y (ts,u)f(s,)ds, (2.1.9)

fo fo

where Y (t,s, u) - transition matrix for the equation

y=A(tu)y, y(tu)=y° (2.1.10)
At t=t, taking into account (2.1.3) from (2.1.9) we will have equation of

moment [42].
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a(#):]_Y (t,,s,4)B(s, )u(s, u)ds (2.1.11)

t0
4
where a(u)=y’-Y (to,tl,u)y’—IY (ty, S, 4) f (s, 1) 0s.
t

Theorem 2.1.1. For system (2.1.1) if and only if exists a control

u(t)=u(t,z), which transfers from state of the system (2.1.2) to the state

(2.1.3) at t=t, >t;, when the vector a(,u) belongs in the field of the values of

the linear transformation

W (t, b 22) = [¥ (t,5,2) B(5, ) B (. 0)Y (o5, 0)ds . (21.12)
t

At that control

u(t, z) =—B'(s, )Y (to,ti, 2) o (2.1.13)
is one of the controls to ensure this transition, where the vector . is determined

from the equation

W (to,t,, ) Yo = (). (2.1.14)
Proof. We introduce the change of variable
n(t ) =Y (t,,t, 1) y(t, ). (2.1.15)
Then by the properties of the transition matrix will be
y(tu) =Y (tt, 1) (t, ),

Y (ttg, )77 (t, ) +Y (.8, 1) (t, 1)
= A(t, 1)Y (tty, ) m(t, )+ B(t, p)u(t, )+ £ (t, 1)
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or

Y (tty, 1) 77(t, 20) = B(t, zr)u(t, )+ f (t, ).

Multiplying this equality on the left to matrix Y (t,,t, 2) obtain the

it ) =Y (tot, 1) B(t, )u(t, ) +Y (to,t, 20) T (8, 12). (2.1.16)

If reasoning as in the previous case, control u(t, z2) exists if and only if the

set of values that can take the

(ts) (bt [Y (t5,0)  (5,0)08

tO
belongs to the region of values of operator

W (ty,t, 1) = ]I.Y (ty,5,2)B(s, 1) B'(5, 1) Y'(t5,5, 1) ds. (2.1.17)

fo

Then the desired transition is possible, if we to require that there has been a

U(E,ﬂ)—n(to,y)—lj\( (to,5, ) (s, 0)dls

fo

=Y (ty. b, p) Y - y° —]1-Y (to,s, ) f(t, )ds =—ar ().

t
This means that the desired transformation is possible if and only if the vector
a(u) for each x>0 lies in the region values W (t,,t,, ) and one of the
control providing this transformation is a control (2.1.13), g.e.d.
It follows from this theorem that if 0<x<1 and a t, for all t matrix

W (t,,t,,2) has maximal rank, then the system (2.1.1) is completely
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controllable. Matrix W (t,,t,, z2) in shape (2.1.12) at x>0 has the following

properties [65]: it is symmetric, non-negative, defined for t, >t, and satisfies:

a) matrix differential equation

W (tt, u)= At )W (Lt a) +W (L6, ) A (L) -B(Lu)B (L a). (54 4g)
W (t,t, 4)=0

b) functional equation
W (to,ty, 0) =W (to,t, ) +Y (o, t, )W (81, )Y (Lo, 8, 2¢).  (2.1.19)
If we introduce in the form of a block matrix
Wit ) Wo(tt, u)

W(t,tp/u): Wzl(t!tl'/u) 1W3(t,t1,,u) ,
7,

(2.1.20)

then the equation (2.1.18) can be rewritten as a system of three linear singularly
perturbed equations are not separated variables:

W= A (DW, + A, (W, +W, A (1) +W, A, (1) - B(1) B, (1),
N, = pA (W, + A, (D)W, +WA, (1) +W,A, (1) - B, (t)B, (1),  (2.1.21)
PN = g (D)W, + A, ()W, + 20N, A, (1) +WaA, (1) + B, (1) B, (1),
Wi (tt, ) =0, Wy (t,t, 12) =0, Wi(t,t, 1) =0 (21.22)

Theorem 2.1.2. Let matrix H=H(t,z), N=N(t,x) are solutions of

differential equations

—pH = uH(A (1) + A () H)+ A (t)+ A (t)H =0, (2.1.23)
uN = pH (A (t)+ A (t)H)N + N (A, (t)— uHA, (t))+ A, (t)=0. (2.1.24)
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Then the matrix
~ tl ~ ~
W (t,t, 1) = [G(t,5, 1) B(s, 1) B' (5, )G (1,5, 1) s (2.1.25)
t

satisfies the matrix differential equation

W = A(t, )W + WA (t, 1)~ B(t, 1) Bl (t, t), (2.1.26)
where
A(t, 1) =M (t, 1) (At )M (t, 12) =M (8, 1)), (2.1.27)

I§(t,,u)= M_l(t,,u)B(t,y),

M(t )_ En _IUN(thu)
T HEw B, -uHE NG )
~ (D(t,s,,u) 0
G(t’s’“)‘{o ‘P(t,s,y)]'

®(t,s, 1), ¥(t,s, ) — transition matrices of homogeneous equations:
X=(A()+A{)H ()% pZ=(A(t)-uH(t u)A(t))Z respectively.

Proof. In the matrix equation (2.1.18) we introduce the change of variables in
the form of

W =M (t, ) WM'(t, u). (2.1.28)
Then in view of (2.1.28) from (2.1.18) we have
MWM' + MWM’ + MWM ' = AMWM ' + MWM A’ + BB/,

MWM ' =(AM —M WM’ + MW (MA'~ M)~ BB"
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Multiplying the left by the matrix M ™ and the right to M’'™ we obtain the
equation (2.1.26). When the condition of the theorem matrix

A(t,,u) =M (t,,u)(A(t,y)M (t,,u) -M (t,,u))
is a diagonal block matrix, i.e.
A -AMOH ) 0

At u)= 0 %wm— HHE W AWD) |

We calculate the derivative of the function W (t,t,, ) by t

W :%@G(t,s,y)é(s,y)é’(s,y)G’(t,s,y)dsJ:

—Ig(t,,u) é’(t,,u) + A(t,,u)]l‘G (t,s,u) E(S,,u) B'(s,1)G'(t,s, 1t)ds +

+i1fG(t,s,,u) B(s,,u)é'(s,,u)G'(t,s,,u)dsA’(t,,u)
= A(t,y)W +V\7A'(t,/1)— |_5>(t,/1) B'(t,,u)

g.e.d.

As in the previous case, if you enter the block matrix

Wl(tvtlvﬂ) V\le(t’tlllu)

) V\~/2'(t,t1,,u) i
Y7,

W (t,t, 1)

Ws(tvtp/”

then the equation (2.1.26) can be rewritten as a system of singularly perturbed
three equations with separated variables

W, = A (t )W, + WA (t, 1)~ By (t, ) BI (1, 1),
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N, = A (t )W, + WA, (8, 1) - By (L) B (L), (2.1.29)

Wy = B (t, )y + WA (1, )~ B (t, ) B3 (1, ),
with the final conditions
Wt 22) =0, W, (8,1, ) =0, Wy (8,6, ) =0, (2.1.30)
where A (t, )= A (t)+ A ()H (), A (t )= A, (t)+uH (8, ) A (1),

Equations included in the system (2.1.29) does not depend on each other and
their solutions are matrix

V\~/1(t,t1,,u)=]I.CD(t,S,,u)él(s,/l)él(s,,u)d)'(t,s,,u)ds,
W, (t,t,, 1) = I(Dt s, 1By (5, 12)Bj (5, 1) (t, 3, ),

(t t, ,u J“P t,s, ,u)l§1(s,u)l.5>2’ (S,,u)‘P(t,s,,u)dS,

at 42— 0 for matrix W, (t,t, ), W, (t,t, ), W;(t,t, ) we have the following

limit relations:

W, (4, ), > Wa (), W, (4t ), > W (t), Wy(tt,z),—>Ws(t),
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uniformly in tet,,t; |<[t,.t,]. Matrix v_vl(t)=tj5(t,s)50(s)5(;(s)@(t,s)ds

is the solution of the matrixt differential equation

W = A (t)W, +W, AL ()= By (1) By (t), W (t,t,)=0,

where A, (t)=A ()= A () A (1) A (), By(t)=B,(t)- A (t) A (1)B, (1),
W, (t) =B, (1) B; (1) A (1),

W (t) = [ ~O7B, (1,) B (t)e ¥“"do,
0

is the solution of algebraic equations

A, (W (8) -W (1), AL (1) = B, () B; (1)-

2.2 The Criterion Controllability of Movement of
Singularly Perturbed System

As shown in the preceding paragraph, after transformation gramiana
controllability we received matrix (2.1.25). The structure of the matrix is not
changed and as gramiana controllability can take the matrix (2.1.25). As in the
previous case, if enter the block matrix

Wl(t'tu/l) Wz (t’tl':u)

W (t,t, ) = W (L, ) =W, (4t ) |

1 (2.2.1)
Y7,

then the equation (2.1.26) can be rewritten as a system of singularly perturbed
three equations with separated variables
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)
Wi (t,t, 1) =0, W,(t,t,4)=0, W(t,t,4)=0, (223)
where W, =W, (t,t, 1), W,=W,(t,t,u)— symmetric matrices sizes

N> Nand MxM respectively, W, =W, (t,,t,, #)— matrix size n>m,

A(tu)=A)+A(H(L L), A(tu)=A )+ aH(t L) A (L),
B, (t,12) =B () + N(t. 1) (B, (t) - 4 (t, 1) B, (1)),
B, (t, ) =B, (t)+ uH(t, 1)B,(t).

It should be noted that under the conditions of theorem 2.1.2 the initial system
(2.1.1) can be replaced by an equivalent system (1.1.25). Such a change is

possible, since the matrix integral manifolds H =H (t, ), N=N(t,z) as the

solutions of equations (1.1.20), (1.1.21) there are exists and unique (see chap. 1).

Then we can formulate the following theorem (analogous to theorem 2.1.1).
Theorem 2.2.1. For the system (1.1.25) at £ >0 if and only if there exists a

control G(t)=0(t,x),  which transfers the system from the initial state
y(to,ﬂ)= §° to the final state )N/(t1 ,,u)= ' (see 1.1.24) at t=t, >t;, when the

vector & () =M (t,, 1) () belongs in the region of values of the linear

transformation

W (1o, 1) = [ G (b5, )8 (5,4) B (5, 0) G (ty 5, 1) 5. (2.2.4)

f
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At the same time the control
G(t, 1) =—B'(t, )G’ (t,,t, ) §. (2.2.5)

is one of the controls providing this transition, where the vector is determined
from the equation

W (t,,t, 22) 5. =& (1), (2.2.6)
where
a(u)=M7(t, u)a(u)=M7(to, 1) y* =G (to,t,, )M ™ (1, ) y*

+J1.G(t0,S,,U)M (s,u) T (s m)ds.

L5}
As shown by the formula (2.2.6) if the matrix W (t,,t;, 1) has maximal rank,
then the control system provides translation (1.1.25) from the initial state
(to,yO) to the final state (tl,yl) and system (1.1.25) (and simultaneously the

system (2.1.1)) is considered quite controllable. Therefore, our the nearest goal
is to deduce from the system of equations (2.2.2.) the conditions that provide

full controllability of the system (2.1.1.).
For sufficiently small values z¢, of the equations obtained with respect W,

and V\~/3 are singularly perturbed. At #=0 we have no disturbed (degenerate)

system
A (O, +VT.A (1) B, (1)B; (), W (t,.t) =0,
:vv/w S (1)8; (1), @27
0= A, (&)W, +W,A; (t) - B, (t)B; (),
where A, (1)=A (1)~ A (DA (DA (L), By (1)=B,(1)~A (A (1)B (1)
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The solution of the degenerate system approximates the solution of the

problem (2.2.2), (2.2.3) with precision O(x), and for W, and W, this is true

outside the boundary layer [45], i.e. at away from the point (H,O) .

Since we are interested in the values of submatrices W, (i=2,3) at the
point t =1y, so the value of W, (i=2,3) at the point t =1y, substitute values

of submatrices W, (i =2,3) at indicated the point with an accuracy O(x).

At t=1, from (2.2.7) we have a matrix algebraic equations with constant

coefficients. From the second equation can be determined immediately

W, (t,.t,):

W, (t,t,) =B, (t,) B; (tO)A:lil(to) (2.2.8)

The equation for Ws(to,tl) is the equation of Lyapunov:

A, (t )W, (to,t) + W, (t, 1) A (t,) =B, (1) B; (t,) (2.2.9)
Since the proposal for the real parts of the eigenvalues values of matrix
A, (t) negative for all te[ty,t], then the solution of the Lyapunov equation

can be represented as a convergent integral [45]

0

W, (t.t,) = [e B, (t,) B} (t, )e " dr (2.2.10)
0

solutions (2.2.8) and (2.2.10) may be obtained by other ways. Let’s show it.

Decision matrix equations (2.2.2.) can be formally represented as [45]
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W (t,t, ) = I o(t,5, 12)B, (5, 12)B,(s, )0 (t, 5, 12)ds, (2211)
W, (t,t, 10) = %jq)(t, s, u)By(s, w)By(s, ) (t s, w)ds,  (22.12)

~ 1h ~ ~
W, (tt, )= P [(t,s, B, (s, 1)B; (s, 10)¥'(t,5, ). (2.2.13)

At u—0 matrix W, (t,,t,z)— (2.2.11) tends to the solution of the first
equation of the system (2.2.7), i.e.
1)~ [0 B sk @214
where ®(t,s)— transition matrix for the homogeneous equation
X(t)=A (DX (1),
A=A -AMA ()A), B(t)=B(t)-A(t)A(t)B,(t).

. . t-t
We introduce a new variable 7 = —2

to (2.2.12), (2.2.13) we note that at

sufficiently small 4 matrices A, (t, +7),  Bo(ty +71), B, (t, +71)
are slowly varying functions in the space and they can be replaced by constant

matrices A, (t,), By(t,), B,(t,) [45]. Then at x—0 , (r —w) for matrix

W (t,t,, ) (1=1,2,3) at the point t =1, has the following limit relations:
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W, (t, 4, 1) > W, (5,8 = tqu(to,s)BO (5)Bg(s)@'(t,,s)ds,

W () W (1) B (1) B (1) A (1), @219
() VB (1) = [ B, ()81

0

t

Lemma. Let matrix W, and W, are nonzero, then at x—>0 vector
a =d(y) will be finite value if and only if the last m components of vector

Y. at £ —0 tends to zero.

Proof. Let the vector & limited, i.e. exist a number M, that
\o?i\ <M (2.2.16)

for all i=1,2...,n+m. From (2.2.6) we have the following relation
W (t,,t, ) = V. (2.2.17)
Using the formula the Frobenius [13] ratio (2.2.17) is written in the form
( wl, ﬂwzj ﬁlJ = (%J (2.2.18)
Ho, uw, )\ o, Z.
where @ =P, @, =—PW, -W,", @, =W," — £, W P W,W,",
P=W, — W, Wy, @ = (t,,t, 1),i=12,3; o, % —N—

dimensional, &,,Z. —M— dimensional vectors. From (2.2.18) we obtain the

V*(u){f*j:( Qi T O j (2.2.19)

Z wle', @, + o)
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By the condition of the Lemma, the matrices vvl,vvs_ are nonzero and
reversible. Then for sufficiently small 2 >0 matrix a),(i=1,2,3) exist at

1 —0 from (2.2.19) we have

9.6 5.0 "<

Prove the converse, let the last M components of the vector ¥.(x) at 4 —0

tends to zero. It means that M - dimensional vector ~ Z , (££) has an estimate

2 (1)|=0(n)
Then the vector Z, () can be represented as

Z(u)=p B(n), |B(u)| <M, M~const . (2.2.20)

Considering (2.2.20) from (2.2.17) we get
N W, X, + W
0{(/1)2( 1~'~ H ~2,8j'
W,X. +W, 8

Then for £ —0,

) gr
u WK WG (2.2.21)

ie. vector @(wm) at wu—>0 is the ultimate value, where

X, —nN, m— dimensional vectors, respectively, which do not depend

on 4. The lemma is proved.
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When the condition of the lemma from (2.2.6) we obtain the following

equation for the submatrices W, W,:

W, X =&, (2.2.22)

*

B=a, (2.2.23)

2

Where

a=x-@(t,t)x', a, =a,-W, X
a,=2"+A" () At) X
These relations can be seen at once that for sufficiently small >0,

controllability of the two sub-systems of smaller dimension type

X(t)=A ()X (t)+By(t)u(t)+ f(t) wZ=A(t)Z+B,(t)u+f,(t), (22.24)
where  f,(t)=f (t)—A,(t)A;'(t) f,(t), should be controllability the

complete system (2.1.1). Then from the position of the application of properties
of linear operators controllability criterion for the system (2.1.1) is formulated

in the following theorem.

Theorem 2.2.2. For the system (2.1.1) if and only if there exists a control

u(t)=u(t,z), which transfers the system from state (to, y ) to state(t,, y* ),

*

when vectors @, =x° —®(t,,t,)X", &, =a, —W, X. belong to the

region of values of linear transformations

VEqu):}é(gs)Boﬁ)Bg()é(g,gd (2.2.25)
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W, (t.4) = [e OB, (1) B (1, )e ¥ dr. (2226
0

Respectively, in addition, if 3%.©, B°- or a solution of (2.2.22) and
(2.2.23), it is possible to define control u=u, (t) which depending on the time
of the partial movements mutually independent sub-systems is described by
different analytic expressions and provides this transition to an accuracy O(u),

i.e. it is written in the form

(2.2.27)

t-t  _
where 7=—2, 0’
U

Note that if the vector ¢, belongs to the region of the linear transformation

(2.2.25), the first subsystem of the system (2.2.24) is completely controllable.

To prove this part of the theorem is not difficult.

Proof. The prove of the theorem hold for fast subsystem of the system (2.2.24)
by means of a change of variable

Ai(to) ot
n(t,u)=e ( “ )Z(t,,u). (2.2.28)
Then
. Alt (ﬁ]
Z(t,u)=e “In(t ) (2.2.29)
. A(to) o . Ato) S
and Z(t, 1) =¢ [ ! Jﬂ(tvﬂ)“‘—A ()€ [ ! jn(t,,u)

54



The Optimal Control Algorithms in Systems with Different Rates of Motion

Substituting the value of 7 (t, y) to the fast subsystem (2.2.24) with (2.2.28)
and (2.2.29) we obtain

from whence

) Ay(to) >
uni(t,u)=e [ “ ](BZ (to)u(t)+ f,(t)) (2.2.30)
We introduce a new control

u(t)=0(t)+V (), (2.2.31)

t —_
where 7 =-2
7]

Z_Z = MOB, (1) (t, ) -e MOV B, (4, V (7) - ML (4)  (2.2.32)

The solution of the equation can be written as
n(z) :’7(0)_9_&(%)151 (tO)(B(tO)U(tO)+ f, (tO))
AL G)(B(L)U(L)+ ()~ [ B, (6)V (s)ds.

(2.2.33)

With the change of variables

7 (r)=n(z)+e AT, )( (t Ju(t,
77*<0):77(0 tO)(Bz + f, (to))

~
+
—h
—~
—+
S
SN—
~—

from (2.2.29) we obtain

2(r) = ()= ey (7) =A™ (t) (B2 (t)u(t) + T (1))
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or Z(z)+ A (1) (B, (1) )u(ty)+ f, (1)) = ey’ (¢), from whence

7 (r)=e ™ 2(0)+ A1) (B (bu(t) + f (%)) | (22.34)
From the previous lemma is well known that the control u, (t) , which

translates the state of the fast subsystem (2.2.24) of the z° at t=t, to ' at
t =1, exists if and only if the vector "(0)-7"(z) belongs to the region of

values of the matrix W, (t,,t, ) in (2.2.26).

To complete the desired transition, require that

7 (0) =17 (5) ==& B (v (s)ds. (2.2.35)

0

Then one of the controls providing in the unmentioned transition of system
has the form

V (7)=—Bj}(t,)e @ 57, (2.2.36)

where 4" is determined from the equation

_tO
)7

77*(0)_77*(71) :V\_/s (tO’t:L)ﬁ* y O = f

Corollary 1. If the matrices (2.2.25), (2.2.26) have maximal ranks, then the
system (2.1.1) is completely controllable.

Corollary 2. In the stationary case:

a) the operator W, (l’i,to ) (2.2.25) has full rank for any {, >t ;

b) the operator W, (t,,t,) (2.2.26) has full rank if the symmetric matrix B,B;

is positive definite.
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2.3 Estimation of the Standard Deviation of the Trajectory
of the System of Movement

In this section is solved the problem of estimation of the standard deviation of
motion of a singularly perturbed system. The main requirement for closed-loop
system is the system to return to the zero from any state, and the value of
criterion quality along any such motion should be minimized.

Consider the quadratic functional

J :tjy'(t)w(t)y(t)dt (2.3.1)

where w(t)= (Wl WZJ.

W, W,

In the closed-loop optimal trajectory of system is described by homogeneous
equations. Therefore avoiding complex analytical expressions and extra

notation we restrict homogeneous equations, which are obtained from (2.1.1) at
lKLy)ZO,ﬁ(Ly)zo,B(Ly)zo
By virtue of the equations of motion

X(t)=0(t,to ) X(t,), Z(t)="P(t.t,, )Z(t,) we have

J =j Y (1) (.t )W (1) G (1, t) ¥ (b )dt = 7' (& )V (L1, 4) Y (&), (2:3.2)
where

G(t,tovu):[q)(tgo'ﬂ) T(t’i}ﬂ)’], v(t,to,y)zie'(t,toﬂ)w (1)G(t,t,)dt, (2.3.3)

_ E, -—-uN
where W=MWM, M= .
H E.,—u«HN
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Thus, the target value J is a quadratic form ¥(t,), and V (t,t, x)— its
matrix. If there are known transition matrices ®(t,t,, 1),  W¥(t,t, ), then

the matrix V(to,g,y) can be calculated using the formula (2.3.3). One can
show other methods of calculation. This problem can be reduced to the solution

of a linear system with singular perturbations, replacing t, to t and

differentiating expression for the V (t,t,, z2) by t we have:

d df} .
—V (t,t,u)=—| | G'(s,t, )W (5)G(Ss,t, u)ds
Wit g feGuiens]
=-A()V (t,t,2) -V (t,t, 2) A(t)-W (1).
From the definition V (t,t,, ) it follows that V (t,,t,, 1) =0.
The matrix V is divided into blocks
vz[vl, ”sz (2.3.5)
Ny 1V,

and the equation (2.3.4) in the form of the system three matrices equations:

v, = _A; (Vs _Vl'&i(t) -W, (t), Vi(t.t,)=0,

N, =—uR (), =V, A, (1) -W, (1), V,(t.4)=0, (2.3.6)

,le3 = _Az: ('[)V3 -V,A, (t) _Ws (t)’ Vs (t'l’tl) =0,
which can be solved independently.

Note that the boundary conditions of differential equations are given at the
not initial time but at the end of the process.

Thus, the following theorem holds.
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Theorem 2.3.1. If the blocks of matrix V are the solutions of differential

equations in (2.3.6), and X(t), Z(t)— solutions of the system

X=

;Px

(1), uZ=Aat)Z at t, <t <t then the formula is true

Y

[9/(tW (©)7()dt =" (t )V (to, b, 22) § (t), (2.3.7)

fo

where y(t):y(t,y)z(i(t'ﬂ)j.

Z(t, p)
Limit task (at u—0) for (2.3.6) has the form
Vi =-A OV -VIA (1) =W, (t), Vi(tt;)=0, (2.3.72)
0=-V,A, (t)-W,(t) (2.3.7b)
0=—A (t)V; — VoA (1) - W5 (1),
where A (t)=A(t)—A (t)A™*(t)A(t),
W, (t) =W, + HW, +W,H, + HW;H,,
sz :W2+H(;\N3’ Vvs =W, HO:_AA_lAB'
For small x are possible various ways to construct an approximate solution

of the system (2.3.6).

At the basic of the approximate solutions lie solutions "systems of fast

movements."
dv, — = = = =
o = HAV VoA W, Y (0)=0, (2.3.8)
AV e o
_de =-AV; -V;A -W;, Vs (0) =0, (2.3.9)
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where A=A ()~ A (b +2u), A (L +m)= A (L) =A,

W, (4, + 220) W, (t, + 720) ~ W, () =W, i:(2,3),r=%,
A=A-AATA.

Solutions (2.3.8), (2.3.9) are satisfying the zero initial conditions have the
form

5 0 _#;{(T_E)l _
V,(7)= je W,e 4do, (2.3.10)
5 0 _AA(T_d)l _
Vi(7)= Ie W,e ™ “do, (2.3.11)
Consider the equation
~UAS, = 5,A, ~W, =0, (23.12)
—A5, —S,A, -W, =0, (2.3.13)

It is easy to show that if the matrix A, stable, then the matrices

5, =J’e”A1'SW2eA“Sds, 5, =J.eA"‘SW3eA4Sds
0 0

are the unique solutions of the equations (2.3.12) and (2.3.13) respectively. If
the solution (2.3.10), (2.3.11) at 7 — —oo tend to solutions of the equations
(2.3.12), (2.3.13), then the well-known theorem Tikhonov, we can say that the
initial value (V,(0),V3(0)) = (0,0) belongs to the region of influence of the rest

point (2, 93).
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This raises the question: which kind of conditions the functions V2,V at

7 — —oo tend to solutions of the equations (2.3.12), (2.3.13)?

On this task a positive response given by the following theorem.
Theorem is given for (2.3.11) and (2.3.13).
Theorem 2.3.2. Let A, - stable matrix. Then V;(7)—> 6, at 7 ——o, if and

only if the equality

0
j eNW,erdo =eM 5,eM 6, (2.3.14)

T

where J, - solution of the equation (2.3.13).

Proof. Let the equality (2.3.14) function \73 is written in the form
0

Vy(r) = [eNW,edoe A (2.3.15)

T

Considering (2.3.14) from (2.3.15) we obtain
0 p—
e A j MW - do-e ™ =5, —e ¥ se M. (2.3.16)
Since by hypothesis of theorem the matrix A, is stable and from this follows
that for 7 ——o0 V,(7) = .

Suppose now, on the contrary: \73(r)—>53 at 7 ——oo, where ¢, — solution

of equation (2.3.13). If so, then the integral (2.3.14) can be represented in the

form
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0
efAéerA“\NSeA” do-e M =5-e e M (5344

From this follows the equation (2.3.14). Now we show the validity of the

equality (2.3.14) that &, - solution of the equation (2.3.13).
Differentiating both sides of (2.3.14) by 7 we have:
—eMW,eh" = AeM e e N Se A,
Multiplying this equality on the left by the matrix e A, right to matrix

e A , obtain the equivalent equation:

W, =e A7A, M5, + o, AT,
Considering the property of the matrix exponential for constant matrix A, :
e™ A, = A,e™  we have from the last
- A5, —5,A, -W, =0,

By assumption &, is a solution of (2.3.13), and therefore is obtained the

identity.

The above theorem is valid for (2.3.10) (2.3.12).
Thus, the estimate of the integral reduces to the solution of algebraic

equations (2.3.12), (2.3.13) in the semi-infinite interval (O,oo). Following

Tikhonov's theorem, we arrive at the following conclusion:
If a) the matrices A(t) (i=L14) uniformly bounded and uniformly

continuous together with its derivatives at t e [to ,tl];
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b) A,(t)- stable matrix at t e[t,,t,], then exists a number s, such that
when 0< u < u, the solution of (2.3.14) exists and is unique in the segment

t, <t<t,.

The solution of problems (2.3.7a), (2.3.8), (2.3.9) can serve as the asymptotic
behavior of solutions of (2.3.6) and when assessing the value of the integral
(2.3.1) provide more accurate results than solutions problems (2.3.7).
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