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8.1 Introduction

At the initial stage the notion of I-convergence was introduced by
Kostyrko, Salat and Wilczynski[48]. Later on it was studied by Salat,
Tripathy and Ziman[65], Demirci [10] and many others. I-convergence is

a generalization of Statistical Convergence.
Now we have a list of some basic definitions used in the chapter:

Definition 8.1. A double sequence of complex numbers is defined as a
function = : Nx N — C. We denote a double sequence as (z;;), where the
two subscripts run through the sequence of natural numbers independent of
each other. A number a € C is called a double limit of a double sequence
(x;;) if for every € > O there exists some N = N(¢) € N such that

|(zij) — af <e, foralli;j > N (seel6,7,8])

Definition 8.2. A double sequence (z;;) € w is said to be I-convergent

to a number L if for every € > 0,

In this case we write I — lim x;; = L.

Definition 8.3. A double sequence (x;;) € w is said to be I-null if L = 0.
In this case we write

Definition 8.4. A double sequence (z;;) € w is said to be I-cauchy if for

“Example is the school of mankind, and they will learn at no other.”-Edmund Burke
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every € > ( there exist numbers m = m(e), n= n(e) such that

{(i,j) e NXN: |25 — x| > €} € 1.

Definition 8.5. A double sequence (z;;) € w is said to be I-bounded if
there exists A/ > 0 such that

{(Z,]) eNxN: |IZ]| > M}

Definition 8.6. A double sequence space E is said to be solid or normal
if (z;;) € E implies (a;;x;;) € E for all sequence of scalars («a;;) with
la;;| < 1forall (i, j) € N x N.

Definition 8.7. A double sequence space F is said to be monotone if it

contains the canonical preimages of its stepspaces.

Definition 8.8. A double sequence space F is said to be convergence free
if (y;;) € E whenever (z;;) € E and z;; = 0 implies y;; = 0.

Definition 8.9. A double sequence space E is said to be a sequence
algebra if (z;;.y;;) € E whenever (x;;), (y;;) € E.

Definition 8.10. A double sequence space E is said to be symmetric if

x;;) € E implies (z.(;;)) € E, where 7 is a permutation on N x N.
J (%)
In this Chapter we introduce the following classes of sequence space:
22l ={x = () € qw: [ —1lim ZPx = L forsome L € C }
QZ()T = {.T = (%Zj) € W I —lim ZPzx = O}
22l = {r = (2;5) € 2w :{(i,j) ENxN:
there exist M > 0, |ZPz| > M} € I}

2200 = {2 = (x;;) € aw :sup|ZPz| < oo}
1,J
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We also denote the multiplier double sequence spaces as

Zmé = QZooﬂ QZI and mergo = 2Zoo N QZ({

8.2 Main Results

Theorem 8.2.1. The classes of sequences 227, , 2], ym% and ;m% are

linear spaces.

Proof. We shall prove the result for the space Z’. The proof for the
other spaces will follow similarly. Let (z;;), (vij) € 22" and let a, 3 be
scalars. Then

I —lim |z;; — Ly| = 0, for some L; € C;

I —lim |y;; — Lo| = 0, for some L, € C.

That is for a given € > 0, we have
Alz{(i,j)GNxN:|xij—L1|>g}€I, 8.1]
Ay ={(3,5) e NX Nt |y — Lo| > %} el 8.2]
We have

|(azij + Byij) — (aLy + BL2)| < |e|(|y; — Lal) + [BI(Jys; — Lal)

< |wij — La| + |yij — Lal.
Now, by [8.1] and [8.2],

{(i,7) € Nx N [(awy; + Byij) — (aLi + BL2)| > e} C A1 U As.

Therefore (ouz;; + /Byij) € ,Z!. Hence 52! is alinear space.
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We state the following result without proof in view of Theorem 2.1.

Theorem 8.2.2. The spaces ngZ and szzo are normed linear spaces,
normed by

[|i5][« = sup [as]. 8.3]

2y

Theorem 8.2.3. A sequence x = (z;;) € am’ I-converges if and only if
for every € > 0 there exists N, = (m,n) € N x N such that

{(l,]) e NxN: ‘xij — ZN,

<€} € 9mk 8.4]
Proof. Suppose that . = I — lim x. Then

Be={(i,j) eNxN: |z;; — L] < g}e mb forall e > 0.

Fix an N, = (m,n) € B.. Then we have

€ €
len. =@yl < lov. = LI+ [L—ay| <5+ 5 =€

which holds for all (4, j) € B.. Hence
{(’L,j) e NxN: ‘SCZ']' — TN,

<€} € omk.

Conversely, suppose that {(7,7) € N x N : |z;; — zn,
That is

< e} € amk.

{(4,7) e NXN: |z, — ap,
for all ¢ > 0. Then the set

<€} S ngZ

C.={(i,j) ENxN:az; € [wn, — €, 7N, + €]} € om’ forall e > 0.
Let J. = [zn. — €, 2. + €] If we fix an € > 0 then we have C. € ymL
as well as C's € om%. Hence C. N C: € omZL. This implies that
J=J.nJ: 4
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that is
{(i,7) e NxN:z;; € J} € ymL
that is
diamJ < diamJ,
where the diam of J denotes the length of interval J. In this way, by
induction we get the sequence of closed intervals

J=1),2I;D... DL D ..
with the property that diaml, < idiamI,_, for (k=2,3,4,...) and
{(i,j) e Nx N:xz;; € I} € 9mk for (k=1,2,3,4,......). Then there exists

af € NI, where (i,j) € N x N such that { = [ — limx, that is
L=1-limx.

Theorem 8.2.4. Let [/ be an admissible ideal. Then the following are
equivalent.
(a) (%) € 27,
(b) there exists (y;;) € 2Z such that z;; = y,;, for a.a.krl;
(c) there exists(y;;) € 22 and (2;;) € 2Z{ such that x;; = y;; + z;; for all
(7,7) € N x Nand

(d) there exists a subset X = {k; < ks....} of N such that K € £(])
and lim |z, — L| = 0.
n—o0

Proof. (a) implies (b). Let (z;;) € 2Z”. Then there exists L € C such
that
{(Z,])GNXN|$”—L|Z€}EI

Let (my, n;) be an increasing sequence with (m¢, n;) € N x N such that

{(Zaj) < (mt,nt) : ‘xij — L‘ > z} cl.
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Define a sequence (y;;) as

Yij = x5, forall (i,7) < (my,n1).

For (m¢, n:) < (4,7) < (myy1,ner1) for teN.

vii = Tij, if |.T2'j — L| < t_l,
Y L, otherwise.

Then (y;;) € 22 and form the following inclusion

{0, 7) < (mg,ne) = w5 # yigy S {(,5) < (me,ng) < |wyg — L] > e} € 1.

We get x;; = y;;, for a.akrl

(b) implies (c). For (z;;) € 227, there exists (y;;) € 2Z such that
z;; = vy, foraakrl Let K = {(i,j) € Nx N:2;; # y;;}, then K € [.

Define a sequence (z;;) as

Zij = .
! 0, otherwise.

Then Zij € QZé and Yij € 2 Z.

(c) implies (d). Let P, = {(¢,j) € Nx N : |z;;| > €} € [ and

K =P = {(i1, 1) < (iz, jn) < ...} € £(I).

Then we have lim |z, ;) — L| = 0.
n—o0

(d) implies (a). Let K = {(i1,/1) < (i2,52) < ...} € £(I) and

lim |z, .y — L| = 0. Then for any € > 0, and Lemma 1.17, we have
n—oo

{(i,j) e NxXN: |z;; — L| > ¢} C K°U{(i,j) € K : |z;; — L| > €}
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Thus (z;;) € 22"
Theorem 8.2.5. The inclusions QZ({ c 2 c ngo hold and are proper.
Proof. Let (z;;) € 2Z”. Then there exists L € C such that
I —lim|z;; —L| =0
We have |z;;| < |z;; — L| + 3|L|. Taking the supremum over (i, j) on

both sides we get (z;;) € 2ZL. The inclusion 2! C Z' is obvious.

The strict inclusion is also trivial.

Theorem 8.2.6. The function & : ymL — R is the Lipschitz function,

where omL = ,Z1 N ,Z,, and hence uniformly continuous.

Proof. Let 7,y € 9mbL, x # y. Then the sets
Ar ={(i,7) e NXN: |zy; — h(z)| > [|lz — yll.} € 1,

Ay = {(6,5) e Nx Ny = h(y)| = |l —yll.} € 1.

Thus the sets,
By ={(i,j) e Nx N: |z;; — h(z)| < ||z —y||.} € amE,

By ={(i,5) € Nx N: [y; — hy)| < ||z —yll.} € 2m5.

Hence also B = B, N B, € QmIZ, so that B # ¢. Now taking (i,j) in B,

7(z) = hy)| < [Il@) = 2i] + 235 = | + 1y = Ay)| < 3[[z = yl]..

Thus A is a Lipschitz function. For gmlzo the result can be proved
similarly.

Theorem 8.2.7. If z,y € ymZL, then (z.y) € ymL and
hwzy) = h(z)h(y).
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Proof. For e > 0
.o I
B, ={(i,j) e Nx N: |z — h(x)| < e} € amz,

B, ={(i,j) e Nx N: |y — h(y)| < e} € am5.

Now,
lz.y — Mz)W(y)| = vy — 2h(y) + zh(y) — A(x)A(y)]

< lally = ny)| + [A(y)[|z = A(z)] [8.5]

As omL C ,Z,, there exists an M € R such that i|z| < M and
|h(y)| < M. Using eqn[8.5] we get

|z.y — h(z)h(y)| < Me+ Me =2Me

For all (i,j) € B, N B, € am%. Hence (z.y) € »m% and
h(zy) = h(x)h(y). For ym%  the result can be proved similarly.

Theorem 8.2.8. The spaces 22({ and gmfgo are solid and monotone .

Proof. We shall prove the result for »Z. Let (z;;) € Z}. Then

Let («;;) be a sequence of scalars with |o;;| < 1 forall (7,5) € N x N.
Then the result follows from [8.6] and the following inequality

|| < ogllay| < Jais| for all (z,5) € N x N,

That the space »Z! is monotone follows from the Lemma 1.16. For

zmIZO the result can be proved similarly.
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Theorem 8.2.9. If I is not maximal, then the space 2 Z! is neither solid

nor monotone.

Proof. Here we give a counter example. Let (z;;) = 1 for all
(i,7) € N x N. Then (z;;) € 22’ Let K C N x N be such that K ¢ [
and N x N — K ¢ I. Define the sequence

(i) = { (zi), if (i,)) € K,

0, otherwise.

Then (y;;) belongs to the canonical preimage of K-step space of 22 but

(yij) € 22" Hence 2Z' is not monotone.
Theorem 8.2.10. The spaces 2Z7 and ,Z] are sequence algebras.

Proof. We prove that »Z] is a sequence algebra. Let (z;;), (vi;) € 224.
Then
I —lim|z;j| =0 and I —lim|y;| =0

Then we have I — lim |(z;;.y;;)| = 0. Thus (z;;.y;;) € 22{. Hence
»Z! is a sequence algebra. For the space »Z’, the result can be proved

similarly.

Theorem 8.2.11. The spaces »Z! and QZ({ are not convergence free in

general.

Proof. Here we give a counter example. Let / = [;. Consider the

sequence (x;;) and (y;;) defined by

1
Tij = E and y;; = 4.7 forall (i,j)) e Nx N

Then (z;;) € 227 and 2 Z{, but (y;;) ¢ 227 and 2 Z]. Hence the spaces

»Z1 and ,Z! are not convergence free.
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Theorem 8.2.12. If I is not maximal and [ # I, then the spaces 227

and ,Z! are not symmetric.

Proof. Let A € I be infinite. If

{ 1, fori, j€A,
xij:

0, otherwise.

Thenz;; € 22} C 92! Let K C Nbesuchthat K ¢ JandN—K ¢ I.
Let¢p: K - Aand ¢ : N— K — N — A be bijections, then the map
7 : N — N defined by

e :{ o(k), fork e_K,
W(k), otherwise.

is a permutation on N, but Z(r(m)yr(n)) ¢ 227 and Z(x(m)n(n)) ¢ 224
Hence ,Z! and »Z! are not symmetric.

Theorem 8.2.13. The sequence spaces »Z! and ,Z/ are linearly
isomorphic to the spaces oc! and oc) respectively, i.e 2Z7 = ,cl and

I ~ I
QZO = 2Cp-

Proof. We shall prove the result for the space »Z’ and 5c!. The proof
for the other spaces will follow similarly. We need to show that there
exists a linear bijection between the spaces 32’ and 5¢!. Define a map
T: 2 — el suchthatz — o' = Tx

T(zij) = prij + (1 = p)ri-1)(-1) = Ty
where x 1 = 0,p # 1, 1 < p < oo. Clearly T is linear. Further, it is trivial
that x = 0 = (0,0,0,...... ) whenever Tz = 0 and hence injective. Let

x;j € oc! and define the sequence z = x;; by

MZZ (1=r)i=5) N =r)i=2)

r=0 s=0
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for (z,7) € N x N and where M = Il) and N = %. Then we have

lim  pz;; + (1 = p)a-1)G-1 =

(i,5)—00

J

(6.3) =00 r=0 s=0
i—1 j—1
+<1 . p> . %1)11100 M (_1)(z—l—'r)(]—l—s)N(z—l—r)(g—l—s)x(i_l)(j_l)
’ r=0 s=0
= lim x
(id)o0

which shows that z € ,Z7. Hence T is a linear bijection. Also we have
||z||« = ||Z7z||.. Therefore

|z|[« = sup [pry + (1 = p)ri-1)G-1)l

(4,7)ENXN
= sup |pMZZ (i=r)(=5) Ny (=) (G =5) 50 Ty
(7,7)eNXN —0 s—0
i—1 j—1
—i—(l—p)M ( 1)(z 1-r)(j—1— S)N(Z 1-r)(j—1— s)x(Z G 1)|
r=0 s=0
= sup |z = ||z e
(i,j)ENXN

Hence ,Z! = ,¢l.
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